Metamath Proof Explorer


Theorem gricref

Description: Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 29-Apr-2025)

Ref Expression
Assertion gricref G UHGraph G 𝑔𝑟 G

Proof

Step Hyp Ref Expression
1 grimid G UHGraph I Vtx G G GraphIso G
2 brgrici I Vtx G G GraphIso G G 𝑔𝑟 G
3 1 2 syl G UHGraph G 𝑔𝑟 G