Metamath Proof Explorer


Theorem gricsym

Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 3-May-2025)

Ref Expression
Assertion gricsym G UHGraph G 𝑔𝑟 S S 𝑔𝑟 G

Proof

Step Hyp Ref Expression
1 brgric G 𝑔𝑟 S G GraphIso S
2 n0 G GraphIso S f f G GraphIso S
3 1 2 bitri G 𝑔𝑟 S f f G GraphIso S
4 grimcnv G UHGraph f G GraphIso S f -1 S GraphIso G
5 brgrici f -1 S GraphIso G S 𝑔𝑟 G
6 4 5 syl6 G UHGraph f G GraphIso S S 𝑔𝑟 G
7 6 exlimdv G UHGraph f f G GraphIso S S 𝑔𝑟 G
8 3 7 biimtrid G UHGraph G 𝑔𝑟 S S 𝑔𝑟 G