| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
1 2 3 4
|
grimprop |
|
| 6 |
5
|
adantl |
|
| 7 |
|
f1ocnv |
|
| 8 |
7
|
ad2antrl |
|
| 9 |
|
vex |
|
| 10 |
|
cnvexg |
|
| 11 |
9 10
|
mp1i |
|
| 12 |
|
f1ocnv |
|
| 13 |
12
|
ad2antrl |
|
| 14 |
|
f1ofo |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
|
foelcdmi |
|
| 17 |
15 16
|
sylan |
|
| 18 |
|
2fveq3 |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
imaeq2d |
|
| 21 |
18 20
|
eqeq12d |
|
| 22 |
21
|
rspcv |
|
| 23 |
22
|
adantl |
|
| 24 |
|
f1ocnvfv1 |
|
| 25 |
24
|
ad4ant23 |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
f1of1 |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
1 3
|
uhgrss |
|
| 30 |
29
|
ad5ant15 |
|
| 31 |
|
f1imacnv |
|
| 32 |
28 30 31
|
syl2an2r |
|
| 33 |
32
|
eqcomd |
|
| 34 |
33
|
adantr |
|
| 35 |
26 34
|
eqtrd |
|
| 36 |
35
|
adantlr |
|
| 37 |
|
simplr |
|
| 38 |
37
|
eqcomd |
|
| 39 |
38
|
imaeq2d |
|
| 40 |
36 39
|
eqtrd |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
ex |
|
| 43 |
23 42
|
syld |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
com23 |
|
| 46 |
45
|
impr |
|
| 47 |
|
eleq1 |
|
| 48 |
|
2fveq3 |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
imaeq2d |
|
| 51 |
48 50
|
eqeq12d |
|
| 52 |
47 51
|
imbi12d |
|
| 53 |
52
|
imbi2d |
|
| 54 |
46 53
|
syl5ibcom |
|
| 55 |
54
|
com24 |
|
| 56 |
55
|
imp31 |
|
| 57 |
56
|
rexlimdva |
|
| 58 |
17 57
|
mpd |
|
| 59 |
58
|
ralrimiva |
|
| 60 |
13 59
|
jca |
|
| 61 |
|
f1oeq1 |
|
| 62 |
|
fveq1 |
|
| 63 |
62
|
fveqeq2d |
|
| 64 |
63
|
ralbidv |
|
| 65 |
61 64
|
anbi12d |
|
| 66 |
11 60 65
|
spcedv |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
exlimdv |
|
| 69 |
68
|
impr |
|
| 70 |
|
grimdmrel |
|
| 71 |
70
|
ovrcl |
|
| 72 |
71
|
simprd |
|
| 73 |
71
|
simpld |
|
| 74 |
|
cnvexg |
|
| 75 |
2 1 4 3
|
isgrim |
|
| 76 |
72 73 74 75
|
syl3anc |
|
| 77 |
76
|
ad2antlr |
|
| 78 |
8 69 77
|
mpbir2and |
|
| 79 |
6 78
|
mpdan |
|
| 80 |
79
|
ex |
|