| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 2 |
|
eqid |
|- ( Vtx ` T ) = ( Vtx ` T ) |
| 3 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
| 4 |
|
eqid |
|- ( iEdg ` T ) = ( iEdg ` T ) |
| 5 |
1 2 3 4
|
grimprop |
|- ( F e. ( S GraphIso T ) -> ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) |
| 6 |
5
|
adantl |
|- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) -> ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) |
| 7 |
|
f1ocnv |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) ) |
| 8 |
7
|
ad2antrl |
|- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) ) |
| 9 |
|
vex |
|- j e. _V |
| 10 |
|
cnvexg |
|- ( j e. _V -> `' j e. _V ) |
| 11 |
9 10
|
mp1i |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> `' j e. _V ) |
| 12 |
|
f1ocnv |
|- ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) ) |
| 13 |
12
|
ad2antrl |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) ) |
| 14 |
|
f1ofo |
|- ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
| 15 |
14
|
ad2antrl |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
| 16 |
|
foelcdmi |
|- ( ( j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
| 17 |
15 16
|
sylan |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
| 18 |
|
2fveq3 |
|- ( i = y -> ( ( iEdg ` T ) ` ( j ` i ) ) = ( ( iEdg ` T ) ` ( j ` y ) ) ) |
| 19 |
|
fveq2 |
|- ( i = y -> ( ( iEdg ` S ) ` i ) = ( ( iEdg ` S ) ` y ) ) |
| 20 |
19
|
imaeq2d |
|- ( i = y -> ( F " ( ( iEdg ` S ) ` i ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) |
| 21 |
18 20
|
eqeq12d |
|- ( i = y -> ( ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) <-> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 22 |
21
|
rspcv |
|- ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 24 |
|
f1ocnvfv1 |
|- ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ y e. dom ( iEdg ` S ) ) -> ( `' j ` ( j ` y ) ) = y ) |
| 25 |
24
|
ad4ant23 |
|- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( `' j ` ( j ` y ) ) = y ) |
| 26 |
25
|
fveq2d |
|- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( ( iEdg ` S ) ` y ) ) |
| 27 |
|
f1of1 |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> F : ( Vtx ` S ) -1-1-> ( Vtx ` T ) ) |
| 28 |
27
|
ad2antlr |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) -> F : ( Vtx ` S ) -1-1-> ( Vtx ` T ) ) |
| 29 |
1 3
|
uhgrss |
|- ( ( S e. UHGraph /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) |
| 30 |
29
|
ad5ant15 |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) |
| 31 |
|
f1imacnv |
|- ( ( F : ( Vtx ` S ) -1-1-> ( Vtx ` T ) /\ ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) -> ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) = ( ( iEdg ` S ) ` y ) ) |
| 32 |
28 30 31
|
syl2an2r |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) = ( ( iEdg ` S ) ` y ) ) |
| 33 |
32
|
eqcomd |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` y ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 35 |
26 34
|
eqtrd |
|- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 36 |
35
|
adantlr |
|- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 37 |
|
simplr |
|- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) |
| 38 |
37
|
eqcomd |
|- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` T ) ` ( j ` y ) ) ) |
| 39 |
38
|
imaeq2d |
|- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) |
| 40 |
36 39
|
eqtrd |
|- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) |
| 41 |
40
|
ex |
|- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) |
| 42 |
41
|
ex |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) |
| 43 |
23 42
|
syld |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) |
| 44 |
43
|
ex |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) -> ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) ) |
| 45 |
44
|
com23 |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) ) |
| 46 |
45
|
impr |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) |
| 47 |
|
eleq1 |
|- ( ( j ` y ) = x -> ( ( j ` y ) e. dom ( iEdg ` T ) <-> x e. dom ( iEdg ` T ) ) ) |
| 48 |
|
2fveq3 |
|- ( ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( ( iEdg ` S ) ` ( `' j ` x ) ) ) |
| 49 |
|
fveq2 |
|- ( ( j ` y ) = x -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( ( iEdg ` T ) ` x ) ) |
| 50 |
49
|
imaeq2d |
|- ( ( j ` y ) = x -> ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) |
| 51 |
48 50
|
eqeq12d |
|- ( ( j ` y ) = x -> ( ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) <-> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 52 |
47 51
|
imbi12d |
|- ( ( j ` y ) = x -> ( ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) <-> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 53 |
52
|
imbi2d |
|- ( ( j ` y ) = x -> ( ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) <-> ( y e. dom ( iEdg ` S ) -> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 54 |
46 53
|
syl5ibcom |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( ( j ` y ) = x -> ( y e. dom ( iEdg ` S ) -> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 55 |
54
|
com24 |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( x e. dom ( iEdg ` T ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 56 |
55
|
imp31 |
|- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 57 |
56
|
rexlimdva |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) -> ( E. y e. dom ( iEdg ` S ) ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 58 |
17 57
|
mpd |
|- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) |
| 59 |
58
|
ralrimiva |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) |
| 60 |
13 59
|
jca |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 61 |
|
f1oeq1 |
|- ( f = `' j -> ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) <-> `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) ) ) |
| 62 |
|
fveq1 |
|- ( f = `' j -> ( f ` x ) = ( `' j ` x ) ) |
| 63 |
62
|
fveqeq2d |
|- ( f = `' j -> ( ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) <-> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 64 |
63
|
ralbidv |
|- ( f = `' j -> ( A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) <-> A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 65 |
61 64
|
anbi12d |
|- ( f = `' j -> ( ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) <-> ( `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 66 |
11 60 65
|
spcedv |
|- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 67 |
66
|
ex |
|- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) -> ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 68 |
67
|
exlimdv |
|- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) -> ( E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 69 |
68
|
impr |
|- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 70 |
|
grimdmrel |
|- Rel dom GraphIso |
| 71 |
70
|
ovrcl |
|- ( F e. ( S GraphIso T ) -> ( S e. _V /\ T e. _V ) ) |
| 72 |
71
|
simprd |
|- ( F e. ( S GraphIso T ) -> T e. _V ) |
| 73 |
71
|
simpld |
|- ( F e. ( S GraphIso T ) -> S e. _V ) |
| 74 |
|
cnvexg |
|- ( F e. ( S GraphIso T ) -> `' F e. _V ) |
| 75 |
2 1 4 3
|
isgrim |
|- ( ( T e. _V /\ S e. _V /\ `' F e. _V ) -> ( `' F e. ( T GraphIso S ) <-> ( `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) /\ E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 76 |
72 73 74 75
|
syl3anc |
|- ( F e. ( S GraphIso T ) -> ( `' F e. ( T GraphIso S ) <-> ( `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) /\ E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 77 |
76
|
ad2antlr |
|- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> ( `' F e. ( T GraphIso S ) <-> ( `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) /\ E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 78 |
8 69 77
|
mpbir2and |
|- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> `' F e. ( T GraphIso S ) ) |
| 79 |
6 78
|
mpdan |
|- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) -> `' F e. ( T GraphIso S ) ) |
| 80 |
79
|
ex |
|- ( S e. UHGraph -> ( F e. ( S GraphIso T ) -> `' F e. ( T GraphIso S ) ) ) |