Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025) (Proof shortened by AV, 11-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | gricer | ⊢ ( ≃𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gricref | ⊢ ( 𝑔 ∈ UHGraph → 𝑔 ≃𝑔𝑟 𝑔 ) | |
2 | gricsym | ⊢ ( 𝑔 ∈ UHGraph → ( 𝑔 ≃𝑔𝑟 ℎ → ℎ ≃𝑔𝑟 𝑔 ) ) | |
3 | grictr | ⊢ ( ( 𝑔 ≃𝑔𝑟 ℎ ∧ ℎ ≃𝑔𝑟 𝑘 ) → 𝑔 ≃𝑔𝑟 𝑘 ) | |
4 | 3 | a1i | ⊢ ( 𝑔 ∈ UHGraph → ( ( 𝑔 ≃𝑔𝑟 ℎ ∧ ℎ ≃𝑔𝑟 𝑘 ) → 𝑔 ≃𝑔𝑟 𝑘 ) ) |
5 | 1 2 4 | brinxper | ⊢ ( ≃𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph |