Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025) (Proof shortened by AV, 11-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricer | ⊢ ( ≃𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricref | ⊢ ( 𝑔 ∈ UHGraph → 𝑔 ≃𝑔𝑟 𝑔 ) | |
| 2 | gricsym | ⊢ ( 𝑔 ∈ UHGraph → ( 𝑔 ≃𝑔𝑟 ℎ → ℎ ≃𝑔𝑟 𝑔 ) ) | |
| 3 | grictr | ⊢ ( ( 𝑔 ≃𝑔𝑟 ℎ ∧ ℎ ≃𝑔𝑟 𝑘 ) → 𝑔 ≃𝑔𝑟 𝑘 ) | |
| 4 | 3 | a1i | ⊢ ( 𝑔 ∈ UHGraph → ( ( 𝑔 ≃𝑔𝑟 ℎ ∧ ℎ ≃𝑔𝑟 𝑘 ) → 𝑔 ≃𝑔𝑟 𝑘 ) ) |
| 5 | 1 2 4 | brinxper | ⊢ ( ≃𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph |