Description: Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gricen.b | ⊢ 𝐵 = ( Vtx ‘ 𝑅 ) | |
| gricen.c | ⊢ 𝐶 = ( Vtx ‘ 𝑆 ) | ||
| Assertion | gricen | ⊢ ( 𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricen.b | ⊢ 𝐵 = ( Vtx ‘ 𝑅 ) | |
| 2 | gricen.c | ⊢ 𝐶 = ( Vtx ‘ 𝑆 ) | |
| 3 | brgric | ⊢ ( 𝑅 ≃𝑔𝑟 𝑆 ↔ ( 𝑅 GraphIso 𝑆 ) ≠ ∅ ) | |
| 4 | n0 | ⊢ ( ( 𝑅 GraphIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GraphIso 𝑆 ) ) | |
| 5 | 1 2 | grimf1o | ⊢ ( 𝑓 ∈ ( 𝑅 GraphIso 𝑆 ) → 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) |
| 6 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 7 | 6 | f1oen | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 → 𝐵 ≈ 𝐶 ) |
| 8 | 5 7 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 GraphIso 𝑆 ) → 𝐵 ≈ 𝐶 ) |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GraphIso 𝑆 ) → 𝐵 ≈ 𝐶 ) |
| 10 | 4 9 | sylbi | ⊢ ( ( 𝑅 GraphIso 𝑆 ) ≠ ∅ → 𝐵 ≈ 𝐶 ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶 ) |