Step |
Hyp |
Ref |
Expression |
1 |
|
opstrgric.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
2 |
|
opstrgric.h |
⊢ 𝐻 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } |
3 |
|
simp1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ∈ UHGraph ) |
4 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ∈ V |
5 |
2 4
|
eqeltri |
⊢ 𝐻 ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐻 ∈ V ) |
7 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
9 |
1
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
10 |
9
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) |
11 |
2
|
struct2grvtx |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
13 |
8 10 12
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) |
14 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
16 |
1
|
fveq2i |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) |
17 |
16
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ) |
18 |
2
|
struct2griedg |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐻 ) = 𝐸 ) |
19 |
18
|
3adant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐻 ) = 𝐸 ) |
20 |
15 17 19
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
21 |
|
simpl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → 𝐺 ∈ UHGraph ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → 𝐺 ∈ UHGraph ) |
23 |
|
simpr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → 𝐻 ∈ V ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → 𝐻 ∈ V ) |
25 |
|
simpl |
⊢ ( ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) |
27 |
|
simpr |
⊢ ( ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
29 |
22 24 26 28
|
grimidvtxedg |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ) |
30 |
|
brgrici |
⊢ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐺 ≃𝑔𝑟 𝐻 ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → 𝐺 ≃𝑔𝑟 𝐻 ) |
32 |
3 6 13 20 31
|
syl22anc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ≃𝑔𝑟 𝐻 ) |