Metamath Proof Explorer


Theorem opstrgric

Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022) (Revised by AV, 4-May-2025)

Ref Expression
Hypotheses opstrgric.g G = V E
opstrgric.h H = Base ndx V ef ndx E
Assertion opstrgric G UHGraph V X E Y G 𝑔𝑟 H

Proof

Step Hyp Ref Expression
1 opstrgric.g G = V E
2 opstrgric.h H = Base ndx V ef ndx E
3 simp1 G UHGraph V X E Y G UHGraph
4 prex Base ndx V ef ndx E V
5 2 4 eqeltri H V
6 5 a1i G UHGraph V X E Y H V
7 opvtxfv V X E Y Vtx V E = V
8 7 3adant1 G UHGraph V X E Y Vtx V E = V
9 1 fveq2i Vtx G = Vtx V E
10 9 a1i G UHGraph V X E Y Vtx G = Vtx V E
11 2 struct2grvtx V X E Y Vtx H = V
12 11 3adant1 G UHGraph V X E Y Vtx H = V
13 8 10 12 3eqtr4d G UHGraph V X E Y Vtx G = Vtx H
14 opiedgfv V X E Y iEdg V E = E
15 14 3adant1 G UHGraph V X E Y iEdg V E = E
16 1 fveq2i iEdg G = iEdg V E
17 16 a1i G UHGraph V X E Y iEdg G = iEdg V E
18 2 struct2griedg V X E Y iEdg H = E
19 18 3adant1 G UHGraph V X E Y iEdg H = E
20 15 17 19 3eqtr4d G UHGraph V X E Y iEdg G = iEdg H
21 simpl G UHGraph H V G UHGraph
22 21 adantr G UHGraph H V Vtx G = Vtx H iEdg G = iEdg H G UHGraph
23 simpr G UHGraph H V H V
24 23 adantr G UHGraph H V Vtx G = Vtx H iEdg G = iEdg H H V
25 simpl Vtx G = Vtx H iEdg G = iEdg H Vtx G = Vtx H
26 25 adantl G UHGraph H V Vtx G = Vtx H iEdg G = iEdg H Vtx G = Vtx H
27 simpr Vtx G = Vtx H iEdg G = iEdg H iEdg G = iEdg H
28 27 adantl G UHGraph H V Vtx G = Vtx H iEdg G = iEdg H iEdg G = iEdg H
29 22 24 26 28 grimidvtxedg G UHGraph H V Vtx G = Vtx H iEdg G = iEdg H I Vtx G G GraphIso H
30 brgrici I Vtx G G GraphIso H G 𝑔𝑟 H
31 29 30 syl G UHGraph H V Vtx G = Vtx H iEdg G = iEdg H G 𝑔𝑟 H
32 3 6 13 20 31 syl22anc G UHGraph V X E Y G 𝑔𝑟 H