Metamath Proof Explorer


Theorem ushggricedg

Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses ushggricedg.v V = Vtx G
ushggricedg.e E = Edg G
ushggricedg.s H = V I E
Assertion ushggricedg G USHGraph G 𝑔𝑟 H

Proof

Step Hyp Ref Expression
1 ushggricedg.v V = Vtx G
2 ushggricedg.e E = Edg G
3 ushggricedg.s H = V I E
4 1 fvexi V V
5 4 a1i G USHGraph V V
6 5 resiexd G USHGraph I V V
7 f1oi I V : V 1-1 onto V
8 7 a1i G USHGraph I V : V 1-1 onto V
9 3 fveq2i Vtx H = Vtx V I E
10 2 fvexi E V
11 resiexg E V I E V
12 10 11 ax-mp I E V
13 4 12 pm3.2i V V I E V
14 opvtxfv V V I E V Vtx V I E = V
15 13 14 mp1i G USHGraph Vtx V I E = V
16 9 15 eqtrid G USHGraph Vtx H = V
17 16 f1oeq3d G USHGraph I V : V 1-1 onto Vtx H I V : V 1-1 onto V
18 8 17 mpbird G USHGraph I V : V 1-1 onto Vtx H
19 fvexd G USHGraph iEdg G V
20 eqid iEdg G = iEdg G
21 1 20 ushgrf G USHGraph iEdg G : dom iEdg G 1-1 𝒫 V
22 f1f1orn iEdg G : dom iEdg G 1-1 𝒫 V iEdg G : dom iEdg G 1-1 onto ran iEdg G
23 21 22 syl G USHGraph iEdg G : dom iEdg G 1-1 onto ran iEdg G
24 3 fveq2i iEdg H = iEdg V I E
25 10 a1i G USHGraph E V
26 25 resiexd G USHGraph I E V
27 opiedgfv V V I E V iEdg V I E = I E
28 4 26 27 sylancr G USHGraph iEdg V I E = I E
29 24 28 eqtrid G USHGraph iEdg H = I E
30 29 dmeqd G USHGraph dom iEdg H = dom I E
31 dmresi dom I E = E
32 2 a1i G USHGraph E = Edg G
33 edgval Edg G = ran iEdg G
34 32 33 eqtrdi G USHGraph E = ran iEdg G
35 31 34 eqtrid G USHGraph dom I E = ran iEdg G
36 30 35 eqtrd G USHGraph dom iEdg H = ran iEdg G
37 36 f1oeq3d G USHGraph iEdg G : dom iEdg G 1-1 onto dom iEdg H iEdg G : dom iEdg G 1-1 onto ran iEdg G
38 23 37 mpbird G USHGraph iEdg G : dom iEdg G 1-1 onto dom iEdg H
39 ushgruhgr G USHGraph G UHGraph
40 1 20 uhgrss G UHGraph i dom iEdg G iEdg G i V
41 39 40 sylan G USHGraph i dom iEdg G iEdg G i V
42 resiima iEdg G i V I V iEdg G i = iEdg G i
43 41 42 syl G USHGraph i dom iEdg G I V iEdg G i = iEdg G i
44 f1f iEdg G : dom iEdg G 1-1 𝒫 V iEdg G : dom iEdg G 𝒫 V
45 21 44 syl G USHGraph iEdg G : dom iEdg G 𝒫 V
46 45 ffund G USHGraph Fun iEdg G
47 fvelrn Fun iEdg G i dom iEdg G iEdg G i ran iEdg G
48 46 47 sylan G USHGraph i dom iEdg G iEdg G i ran iEdg G
49 2 33 eqtri E = ran iEdg G
50 48 49 eleqtrrdi G USHGraph i dom iEdg G iEdg G i E
51 fvresi iEdg G i E I E iEdg G i = iEdg G i
52 50 51 syl G USHGraph i dom iEdg G I E iEdg G i = iEdg G i
53 10 a1i G USHGraph i dom iEdg G E V
54 53 resiexd G USHGraph i dom iEdg G I E V
55 4 54 27 sylancr G USHGraph i dom iEdg G iEdg V I E = I E
56 24 55 eqtr2id G USHGraph i dom iEdg G I E = iEdg H
57 56 fveq1d G USHGraph i dom iEdg G I E iEdg G i = iEdg H iEdg G i
58 43 52 57 3eqtr2d G USHGraph i dom iEdg G I V iEdg G i = iEdg H iEdg G i
59 58 ralrimiva G USHGraph i dom iEdg G I V iEdg G i = iEdg H iEdg G i
60 38 59 jca G USHGraph iEdg G : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H iEdg G i
61 f1oeq1 g = iEdg G g : dom iEdg G 1-1 onto dom iEdg H iEdg G : dom iEdg G 1-1 onto dom iEdg H
62 fveq1 g = iEdg G g i = iEdg G i
63 62 fveq2d g = iEdg G iEdg H g i = iEdg H iEdg G i
64 63 eqeq2d g = iEdg G I V iEdg G i = iEdg H g i I V iEdg G i = iEdg H iEdg G i
65 64 ralbidv g = iEdg G i dom iEdg G I V iEdg G i = iEdg H g i i dom iEdg G I V iEdg G i = iEdg H iEdg G i
66 61 65 anbi12d g = iEdg G g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i iEdg G : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H iEdg G i
67 19 60 66 spcedv G USHGraph g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
68 18 67 jca G USHGraph I V : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
69 f1oeq1 f = I V f : V 1-1 onto Vtx H I V : V 1-1 onto Vtx H
70 imaeq1 f = I V f iEdg G i = I V iEdg G i
71 70 eqeq1d f = I V f iEdg G i = iEdg H g i I V iEdg G i = iEdg H g i
72 71 ralbidv f = I V i dom iEdg G f iEdg G i = iEdg H g i i dom iEdg G I V iEdg G i = iEdg H g i
73 72 anbi2d f = I V g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
74 73 exbidv f = I V g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
75 69 74 anbi12d f = I V f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i I V : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
76 6 68 75 spcedv G USHGraph f f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i
77 opex V I E V
78 3 77 eqeltri H V
79 eqid Vtx H = Vtx H
80 eqid iEdg H = iEdg H
81 1 79 20 80 dfgric2 G USHGraph H V G 𝑔𝑟 H f f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i
82 78 81 mpan2 G USHGraph G 𝑔𝑟 H f f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i
83 76 82 mpbird G USHGraph G 𝑔𝑟 H