Step |
Hyp |
Ref |
Expression |
1 |
|
ushggricedg.v |
|- V = ( Vtx ` G ) |
2 |
|
ushggricedg.e |
|- E = ( Edg ` G ) |
3 |
|
ushggricedg.s |
|- H = <. V , ( _I |` E ) >. |
4 |
1
|
fvexi |
|- V e. _V |
5 |
4
|
a1i |
|- ( G e. USHGraph -> V e. _V ) |
6 |
5
|
resiexd |
|- ( G e. USHGraph -> ( _I |` V ) e. _V ) |
7 |
|
f1oi |
|- ( _I |` V ) : V -1-1-onto-> V |
8 |
7
|
a1i |
|- ( G e. USHGraph -> ( _I |` V ) : V -1-1-onto-> V ) |
9 |
3
|
fveq2i |
|- ( Vtx ` H ) = ( Vtx ` <. V , ( _I |` E ) >. ) |
10 |
2
|
fvexi |
|- E e. _V |
11 |
|
resiexg |
|- ( E e. _V -> ( _I |` E ) e. _V ) |
12 |
10 11
|
ax-mp |
|- ( _I |` E ) e. _V |
13 |
4 12
|
pm3.2i |
|- ( V e. _V /\ ( _I |` E ) e. _V ) |
14 |
|
opvtxfv |
|- ( ( V e. _V /\ ( _I |` E ) e. _V ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
15 |
13 14
|
mp1i |
|- ( G e. USHGraph -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
16 |
9 15
|
eqtrid |
|- ( G e. USHGraph -> ( Vtx ` H ) = V ) |
17 |
16
|
f1oeq3d |
|- ( G e. USHGraph -> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) <-> ( _I |` V ) : V -1-1-onto-> V ) ) |
18 |
8 17
|
mpbird |
|- ( G e. USHGraph -> ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) ) |
19 |
|
fvexd |
|- ( G e. USHGraph -> ( iEdg ` G ) e. _V ) |
20 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
21 |
1 20
|
ushgrf |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) ) |
22 |
|
f1f1orn |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) |
23 |
21 22
|
syl |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) |
24 |
3
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` <. V , ( _I |` E ) >. ) |
25 |
10
|
a1i |
|- ( G e. USHGraph -> E e. _V ) |
26 |
25
|
resiexd |
|- ( G e. USHGraph -> ( _I |` E ) e. _V ) |
27 |
|
opiedgfv |
|- ( ( V e. _V /\ ( _I |` E ) e. _V ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
28 |
4 26 27
|
sylancr |
|- ( G e. USHGraph -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
29 |
24 28
|
eqtrid |
|- ( G e. USHGraph -> ( iEdg ` H ) = ( _I |` E ) ) |
30 |
29
|
dmeqd |
|- ( G e. USHGraph -> dom ( iEdg ` H ) = dom ( _I |` E ) ) |
31 |
|
dmresi |
|- dom ( _I |` E ) = E |
32 |
2
|
a1i |
|- ( G e. USHGraph -> E = ( Edg ` G ) ) |
33 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
34 |
32 33
|
eqtrdi |
|- ( G e. USHGraph -> E = ran ( iEdg ` G ) ) |
35 |
31 34
|
eqtrid |
|- ( G e. USHGraph -> dom ( _I |` E ) = ran ( iEdg ` G ) ) |
36 |
30 35
|
eqtrd |
|- ( G e. USHGraph -> dom ( iEdg ` H ) = ran ( iEdg ` G ) ) |
37 |
36
|
f1oeq3d |
|- ( G e. USHGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) ) |
38 |
23 37
|
mpbird |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
39 |
|
ushgruhgr |
|- ( G e. USHGraph -> G e. UHGraph ) |
40 |
1 20
|
uhgrss |
|- ( ( G e. UHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ V ) |
41 |
39 40
|
sylan |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ V ) |
42 |
|
resiima |
|- ( ( ( iEdg ` G ) ` i ) C_ V -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
43 |
41 42
|
syl |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
44 |
|
f1f |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
45 |
21 44
|
syl |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
46 |
45
|
ffund |
|- ( G e. USHGraph -> Fun ( iEdg ` G ) ) |
47 |
|
fvelrn |
|- ( ( Fun ( iEdg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ran ( iEdg ` G ) ) |
48 |
46 47
|
sylan |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ran ( iEdg ` G ) ) |
49 |
2 33
|
eqtri |
|- E = ran ( iEdg ` G ) |
50 |
48 49
|
eleqtrrdi |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. E ) |
51 |
|
fvresi |
|- ( ( ( iEdg ` G ) ` i ) e. E -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
52 |
50 51
|
syl |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
53 |
10
|
a1i |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> E e. _V ) |
54 |
53
|
resiexd |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( _I |` E ) e. _V ) |
55 |
4 54 27
|
sylancr |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
56 |
24 55
|
eqtr2id |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( _I |` E ) = ( iEdg ` H ) ) |
57 |
56
|
fveq1d |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
58 |
43 52 57
|
3eqtr2d |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
59 |
58
|
ralrimiva |
|- ( G e. USHGraph -> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
60 |
38 59
|
jca |
|- ( G e. USHGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
61 |
|
f1oeq1 |
|- ( g = ( iEdg ` G ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
62 |
|
fveq1 |
|- ( g = ( iEdg ` G ) -> ( g ` i ) = ( ( iEdg ` G ) ` i ) ) |
63 |
62
|
fveq2d |
|- ( g = ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
64 |
63
|
eqeq2d |
|- ( g = ( iEdg ` G ) -> ( ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
65 |
64
|
ralbidv |
|- ( g = ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
66 |
61 65
|
anbi12d |
|- ( g = ( iEdg ` G ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
67 |
19 60 66
|
spcedv |
|- ( G e. USHGraph -> E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
68 |
18 67
|
jca |
|- ( G e. USHGraph -> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
69 |
|
f1oeq1 |
|- ( f = ( _I |` V ) -> ( f : V -1-1-onto-> ( Vtx ` H ) <-> ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) ) ) |
70 |
|
imaeq1 |
|- ( f = ( _I |` V ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) ) |
71 |
70
|
eqeq1d |
|- ( f = ( _I |` V ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
72 |
71
|
ralbidv |
|- ( f = ( _I |` V ) -> ( A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
73 |
72
|
anbi2d |
|- ( f = ( _I |` V ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
74 |
73
|
exbidv |
|- ( f = ( _I |` V ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
75 |
69 74
|
anbi12d |
|- ( f = ( _I |` V ) -> ( ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) <-> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
76 |
6 68 75
|
spcedv |
|- ( G e. USHGraph -> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
77 |
|
opex |
|- <. V , ( _I |` E ) >. e. _V |
78 |
3 77
|
eqeltri |
|- H e. _V |
79 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
80 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
81 |
1 79 20 80
|
dfgric2 |
|- ( ( G e. USHGraph /\ H e. _V ) -> ( G ~=gr H <-> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
82 |
78 81
|
mpan2 |
|- ( G e. USHGraph -> ( G ~=gr H <-> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
83 |
76 82
|
mpbird |
|- ( G e. USHGraph -> G ~=gr H ) |