| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgric |
|- ( G ~=gr H <-> ( G GraphIso H ) =/= (/) ) |
| 2 |
|
n0rex |
|- ( ( G GraphIso H ) =/= (/) -> E. i e. ( G GraphIso H ) i e. ( G GraphIso H ) ) |
| 3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 4 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 5 |
|
simprll |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> G e. USPGraph ) |
| 6 |
|
simprlr |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> H e. USPGraph ) |
| 7 |
|
simpl |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> i e. ( G GraphIso H ) ) |
| 8 |
|
2fveq3 |
|- ( x = j -> ( ( iEdg ` G ) ` ( f ` x ) ) = ( ( iEdg ` G ) ` ( f ` j ) ) ) |
| 9 |
8
|
imaeq2d |
|- ( x = j -> ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) = ( i " ( ( iEdg ` G ) ` ( f ` j ) ) ) ) |
| 10 |
9
|
fveq2d |
|- ( x = j -> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) = ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` j ) ) ) ) ) |
| 11 |
10
|
cbvmptv |
|- ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) = ( j e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` j ) ) ) ) ) |
| 12 |
|
cycliswlk |
|- ( f ( Cycles ` G ) p -> f ( Walks ` G ) p ) |
| 13 |
12
|
ad2antrl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> f ( Walks ` G ) p ) |
| 14 |
13
|
adantl |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> f ( Walks ` G ) p ) |
| 15 |
3 4 5 6 7 11 14
|
upgrimwlklen |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Walks ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) ) |
| 16 |
|
simprrl |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> f ( Cycles ` G ) p ) |
| 17 |
3 4 5 6 7 11 16
|
upgrimcycls |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) |
| 18 |
|
simp3 |
|- ( ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) /\ ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Walks ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) /\ ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) -> ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) |
| 19 |
|
simp2r |
|- ( ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) /\ ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Walks ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) /\ ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) -> ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) |
| 20 |
|
simprrr |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> ( # ` f ) = N ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) /\ ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Walks ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) /\ ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) -> ( # ` f ) = N ) |
| 22 |
19 21
|
eqtrd |
|- ( ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) /\ ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Walks ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) /\ ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) -> ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = N ) |
| 23 |
|
vex |
|- i e. _V |
| 24 |
|
vex |
|- p e. _V |
| 25 |
23 24
|
coex |
|- ( i o. p ) e. _V |
| 26 |
|
vex |
|- f e. _V |
| 27 |
26
|
dmex |
|- dom f e. _V |
| 28 |
27
|
mptex |
|- ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) e. _V |
| 29 |
|
breq12 |
|- ( ( g = ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) /\ q = ( i o. p ) ) -> ( g ( Cycles ` H ) q <-> ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) ) |
| 30 |
29
|
ancoms |
|- ( ( q = ( i o. p ) /\ g = ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) -> ( g ( Cycles ` H ) q <-> ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) ) |
| 31 |
|
fveqeq2 |
|- ( g = ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) -> ( ( # ` g ) = N <-> ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = N ) ) |
| 32 |
31
|
adantl |
|- ( ( q = ( i o. p ) /\ g = ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) -> ( ( # ` g ) = N <-> ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = N ) ) |
| 33 |
30 32
|
anbi12d |
|- ( ( q = ( i o. p ) /\ g = ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) -> ( ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) <-> ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = N ) ) ) |
| 34 |
25 28 33
|
spc2ev |
|- ( ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = N ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) |
| 35 |
18 22 34
|
syl2anc |
|- ( ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) /\ ( ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Walks ` H ) ( i o. p ) /\ ( # ` ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ) = ( # ` f ) ) /\ ( x e. dom f |-> ( `' ( iEdg ` H ) ` ( i " ( ( iEdg ` G ) ` ( f ` x ) ) ) ) ) ( Cycles ` H ) ( i o. p ) ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) |
| 36 |
15 17 35
|
mpd3an23 |
|- ( ( i e. ( G GraphIso H ) /\ ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) |
| 37 |
36
|
ex |
|- ( i e. ( G GraphIso H ) -> ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) |
| 38 |
37
|
rexlimivw |
|- ( E. i e. ( G GraphIso H ) i e. ( G GraphIso H ) -> ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) |
| 39 |
2 38
|
syl |
|- ( ( G GraphIso H ) =/= (/) -> ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) |
| 40 |
1 39
|
sylbi |
|- ( G ~=gr H -> ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) |
| 41 |
40
|
expdcom |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) -> ( G ~=gr H -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) ) |
| 42 |
41
|
exlimdvv |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) -> ( G ~=gr H -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> ( G ~=gr H -> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) |
| 44 |
|
breq12 |
|- ( ( f = g /\ p = q ) -> ( f ( Cycles ` H ) p <-> g ( Cycles ` H ) q ) ) |
| 45 |
44
|
ancoms |
|- ( ( p = q /\ f = g ) -> ( f ( Cycles ` H ) p <-> g ( Cycles ` H ) q ) ) |
| 46 |
|
fveqeq2 |
|- ( f = g -> ( ( # ` f ) = N <-> ( # ` g ) = N ) ) |
| 47 |
46
|
adantl |
|- ( ( p = q /\ f = g ) -> ( ( # ` f ) = N <-> ( # ` g ) = N ) ) |
| 48 |
45 47
|
anbi12d |
|- ( ( p = q /\ f = g ) -> ( ( f ( Cycles ` H ) p /\ ( # ` f ) = N ) <-> ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) ) |
| 49 |
48
|
cbvex2vw |
|- ( E. p E. f ( f ( Cycles ` H ) p /\ ( # ` f ) = N ) <-> E. q E. g ( g ( Cycles ` H ) q /\ ( # ` g ) = N ) ) |
| 50 |
43 49
|
imbitrrdi |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> ( G ~=gr H -> E. p E. f ( f ( Cycles ` H ) p /\ ( # ` f ) = N ) ) ) |
| 51 |
50
|
con3d |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) ) -> ( -. E. p E. f ( f ( Cycles ` H ) p /\ ( # ` f ) = N ) -> -. G ~=gr H ) ) |
| 52 |
51
|
expimpd |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = N ) /\ -. E. p E. f ( f ( Cycles ` H ) p /\ ( # ` f ) = N ) ) -> -. G ~=gr H ) ) |