| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgric |
⊢ ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ( 𝐺 GraphIso 𝐻 ) ≠ ∅ ) |
| 2 |
|
n0rex |
⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ → ∃ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 3 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 5 |
|
simprll |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝐺 ∈ USPGraph ) |
| 6 |
|
simprlr |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝐻 ∈ USPGraph ) |
| 7 |
|
simpl |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 8 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑗 → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) |
| 9 |
8
|
imaeq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑥 = 𝑗 → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) = ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) ) ) |
| 11 |
10
|
cbvmptv |
⊢ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) = ( 𝑗 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) ) ) |
| 12 |
|
cycliswlk |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
| 13 |
12
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
| 15 |
3 4 5 6 7 11 14
|
upgrimwlklen |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ) |
| 16 |
|
simprrl |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) |
| 17 |
3 4 5 6 7 11 16
|
upgrimcycls |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) |
| 18 |
|
simp3 |
⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) |
| 19 |
|
simp2r |
⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) |
| 20 |
|
simprrr |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ( ♯ ‘ 𝑓 ) = 𝑁 ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( ♯ ‘ 𝑓 ) = 𝑁 ) |
| 22 |
19 21
|
eqtrd |
⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) |
| 23 |
|
vex |
⊢ 𝑖 ∈ V |
| 24 |
|
vex |
⊢ 𝑝 ∈ V |
| 25 |
23 24
|
coex |
⊢ ( 𝑖 ∘ 𝑝 ) ∈ V |
| 26 |
|
vex |
⊢ 𝑓 ∈ V |
| 27 |
26
|
dmex |
⊢ dom 𝑓 ∈ V |
| 28 |
27
|
mptex |
⊢ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ∈ V |
| 29 |
|
breq12 |
⊢ ( ( 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ∧ 𝑞 = ( 𝑖 ∘ 𝑝 ) ) → ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ↔ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) ) |
| 30 |
29
|
ancoms |
⊢ ( ( 𝑞 = ( 𝑖 ∘ 𝑝 ) ∧ 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) → ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ↔ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) ) |
| 31 |
|
fveqeq2 |
⊢ ( 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) → ( ( ♯ ‘ 𝑔 ) = 𝑁 ↔ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑞 = ( 𝑖 ∘ 𝑝 ) ∧ 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) → ( ( ♯ ‘ 𝑔 ) = 𝑁 ↔ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) ) |
| 33 |
30 32
|
anbi12d |
⊢ ( ( 𝑞 = ( 𝑖 ∘ 𝑝 ) ∧ 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) → ( ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ↔ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) ) ) |
| 34 |
25 28 33
|
spc2ev |
⊢ ( ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 35 |
18 22 34
|
syl2anc |
⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 36 |
15 17 35
|
mpd3an23 |
⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 37 |
36
|
ex |
⊢ ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 38 |
37
|
rexlimivw |
⊢ ( ∃ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 39 |
2 38
|
syl |
⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 40 |
1 39
|
sylbi |
⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 41 |
40
|
expdcom |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) ) |
| 42 |
41
|
exlimdvv |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 44 |
|
breq12 |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑝 = 𝑞 ) → ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ↔ 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ) ) |
| 45 |
44
|
ancoms |
⊢ ( ( 𝑝 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ↔ 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ) ) |
| 46 |
|
fveqeq2 |
⊢ ( 𝑓 = 𝑔 → ( ( ♯ ‘ 𝑓 ) = 𝑁 ↔ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑝 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( ( ♯ ‘ 𝑓 ) = 𝑁 ↔ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 48 |
45 47
|
anbi12d |
⊢ ( ( 𝑝 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ↔ ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 49 |
48
|
cbvex2vw |
⊢ ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ↔ ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 50 |
43 49
|
imbitrrdi |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
| 51 |
50
|
con3d |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ( ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 52 |
51
|
expimpd |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ∧ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |