| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgrgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
isubgrgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 3 |
|
isubgrgrim.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 4 |
|
isubgrgrim.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 5 |
|
isubgrgrim.k |
⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } |
| 6 |
|
isubgrgrim.l |
⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } |
| 7 |
|
ovex |
⊢ ( 𝐺 ISubGr 𝑁 ) ∈ V |
| 8 |
|
ovex |
⊢ ( 𝐻 ISubGr 𝑀 ) ∈ V |
| 9 |
7 8
|
pm3.2i |
⊢ ( ( 𝐺 ISubGr 𝑁 ) ∈ V ∧ ( 𝐻 ISubGr 𝑀 ) ∈ V ) |
| 10 |
|
eqid |
⊢ ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) |
| 11 |
|
eqid |
⊢ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) |
| 12 |
|
eqid |
⊢ ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) |
| 13 |
|
eqid |
⊢ ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) |
| 14 |
10 11 12 13
|
dfgric2 |
⊢ ( ( ( 𝐺 ISubGr 𝑁 ) ∈ V ∧ ( 𝐻 ISubGr 𝑀 ) ∈ V ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 15 |
9 14
|
mp1i |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 16 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → 𝑓 = 𝑓 ) |
| 17 |
1
|
isubgrvtx |
⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝑁 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) = 𝑁 ) |
| 18 |
17
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) = 𝑁 ) |
| 19 |
2
|
isubgrvtx |
⊢ ( ( 𝐻 ∈ 𝑇 ∧ 𝑀 ⊆ 𝑊 ) → ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) = 𝑀 ) |
| 20 |
19
|
ad2ant2l |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) = 𝑀 ) |
| 21 |
16 18 20
|
f1oeq123d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ↔ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) ) |
| 22 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → 𝑔 = 𝑔 ) |
| 23 |
1 3
|
isubgriedg |
⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝑁 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 24 |
23
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 25 |
24
|
dmeqd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = dom ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 26 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom 𝐼 |
| 27 |
26
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom 𝐼 ) |
| 28 |
|
ssdmres |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 29 |
27 28
|
sylib |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 30 |
5
|
eqcomi |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } = 𝐾 |
| 31 |
30
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } = 𝐾 ) |
| 32 |
25 29 31
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = 𝐾 ) |
| 33 |
2 4
|
isubgriedg |
⊢ ( ( 𝐻 ∈ 𝑇 ∧ 𝑀 ⊆ 𝑊 ) → ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 34 |
33
|
ad2ant2l |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 35 |
34
|
dmeqd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = dom ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 36 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom 𝐽 |
| 37 |
36
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom 𝐽 ) |
| 38 |
|
ssdmres |
⊢ ( { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom 𝐽 ↔ dom ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 39 |
37 38
|
sylib |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 40 |
6
|
eqcomi |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } = 𝐿 |
| 41 |
40
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } = 𝐿 ) |
| 42 |
35 39 41
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = 𝐿 ) |
| 43 |
22 32 42
|
f1oeq123d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ↔ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) |
| 44 |
43
|
anbi1d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 45 |
31
|
reseq2d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) = ( 𝐼 ↾ 𝐾 ) ) |
| 46 |
24 45
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( 𝐼 ↾ 𝐾 ) ) |
| 47 |
46
|
fveq1d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) = ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) |
| 48 |
47
|
imaeq2d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) ) |
| 49 |
40
|
reseq2i |
⊢ ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) = ( 𝐽 ↾ 𝐿 ) |
| 50 |
34 49
|
eqtrdi |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( 𝐽 ↾ 𝐿 ) ) |
| 51 |
50
|
fveq1d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 52 |
48 51
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 53 |
32 52
|
raleqbidv |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 55 |
|
fvres |
⊢ ( 𝑖 ∈ 𝐾 → ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) = ( 𝐼 ‘ 𝑖 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑖 ∈ 𝐾 ) → ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) = ( 𝐼 ‘ 𝑖 ) ) |
| 57 |
56
|
imaeq2d |
⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑖 ∈ 𝐾 ) → ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 58 |
57
|
adantlr |
⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 59 |
|
f1of |
⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 60 |
59
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 61 |
60
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( 𝑔 ‘ 𝑖 ) ∈ 𝐿 ) |
| 62 |
61
|
fvresd |
⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 63 |
58 62
|
eqeq12d |
⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 64 |
63
|
ralbidva |
⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 65 |
54 64
|
bitrd |
⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 66 |
65
|
pm5.32da |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 67 |
44 66
|
bitrd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 68 |
67
|
exbidv |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 69 |
21 68
|
anbi12d |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 70 |
69
|
exbidv |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 71 |
15 70
|
bitrd |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |