Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑘 = ( ◡ 𝐼 ‘ 𝐽 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) |
2 |
1
|
sseq1d |
⊢ ( 𝑘 = ( ◡ 𝐼 ‘ 𝐽 ) → ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ↔ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
3 |
|
fveqeq2 |
⊢ ( 𝑘 = ( ◡ 𝐼 ‘ 𝐽 ) → ( ( 𝐼 ‘ 𝑘 ) = 𝐽 ↔ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) = 𝐽 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑘 = ( ◡ 𝐼 ‘ 𝐽 ) → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ↔ ( ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ∧ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) = 𝐽 ) ) ) |
5 |
|
simpr |
⊢ ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) → 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) |
7 |
|
simpl |
⊢ ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → 𝐽 ∈ 𝐵 ) |
8 |
|
f1ocnvdm |
⊢ ( ( 𝐼 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐽 ∈ 𝐵 ) → ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) |
10 |
|
2fveq3 |
⊢ ( 𝑖 = ( ◡ 𝐼 ‘ 𝐽 ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑖 = ( ◡ 𝐼 ‘ 𝐽 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) |
12 |
11
|
imaeq2d |
⊢ ( 𝑖 = ( ◡ 𝐼 ‘ 𝐽 ) → ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑖 = ( ◡ 𝐼 ‘ 𝐽 ) → ( ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ↔ ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) ) |
14 |
13
|
rspcv |
⊢ ( ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) ) |
16 |
7
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → 𝐽 ∈ 𝐵 ) |
17 |
|
f1ocnvfv2 |
⊢ ( ( 𝐼 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐽 ∈ 𝐵 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) = 𝐽 ) |
18 |
5 16 17
|
syl2anr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) = 𝐽 ) |
19 |
18
|
fveqeq2d |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ↔ ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) ) |
20 |
|
sseq1 |
⊢ ( ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) → ( ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
22 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
23 |
22
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
26 |
|
simp1lr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) |
27 |
|
simp1r |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) |
28 |
26 27
|
ffvelcdmd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ∈ 𝒫 𝑉 ) |
29 |
28
|
elpwid |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑉 ) |
30 |
|
simpl |
⊢ ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑁 ⊆ 𝑉 ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → 𝑁 ⊆ 𝑉 ) |
32 |
|
f1imass |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑉 ∧ 𝑁 ⊆ 𝑉 ) ) → ( ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
33 |
25 29 31 32
|
syl12anc |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
34 |
33
|
biimpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ 𝐽 ∈ 𝐵 ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
35 |
34
|
3exp |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( 𝐽 ∈ 𝐵 → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
36 |
35
|
com24 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐽 ∈ 𝐵 → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) → ( ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ⊆ ( 𝐹 “ 𝑁 ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐽 ∈ 𝐵 → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
38 |
21 37
|
sylbid |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) ) → ( ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐽 ∈ 𝐵 → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
39 |
38
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐽 ∈ 𝐵 → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) ) |
40 |
39
|
com25 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( 𝐽 ∈ 𝐵 → ( ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) ) |
41 |
40
|
imp42 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝐻 ‘ 𝐽 ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
42 |
19 41
|
sylbid |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
43 |
42
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) |
44 |
43
|
com23 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) |
45 |
44
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → ( ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
46 |
45
|
com23 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( ( 𝐻 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) = ( 𝐹 “ ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
47 |
15 46
|
syld |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) |
48 |
47
|
ex |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) → ( ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) ) |
49 |
48
|
com25 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) → ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → ( ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) ) ) ) |
50 |
49
|
3imp1 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( ( ◡ 𝐼 ‘ 𝐽 ) ∈ 𝐴 → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) ) |
51 |
9 50
|
mpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ) |
52 |
6 7 17
|
syl2an |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) = 𝐽 ) |
53 |
51 52
|
jca |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ( ( 𝐺 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) ⊆ 𝑁 ∧ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝐽 ) ) = 𝐽 ) ) |
54 |
4 9 53
|
rspcedvdw |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) → ∃ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) |
55 |
54
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) → ∃ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) ) |
56 |
|
f1of |
⊢ ( 𝐼 : 𝐴 –1-1-onto→ 𝐵 → 𝐼 : 𝐴 ⟶ 𝐵 ) |
57 |
56
|
adantl |
⊢ ( ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐼 : 𝐴 ⟶ 𝐵 ) |
58 |
57
|
3ad2ant2 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) → 𝐼 : 𝐴 ⟶ 𝐵 ) |
59 |
58
|
3ad2ant1 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) → 𝐼 : 𝐴 ⟶ 𝐵 ) |
60 |
|
simp2 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) → 𝑘 ∈ 𝐴 ) |
61 |
59 60
|
ffvelcdmd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) → ( 𝐼 ‘ 𝑘 ) ∈ 𝐵 ) |
62 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑘 → ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑘 ) ) |
64 |
63
|
imaeq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) |
65 |
62 64
|
eqeq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ↔ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) ) |
66 |
65
|
rspcv |
⊢ ( 𝑘 ∈ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) ) |
67 |
66
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) ) |
68 |
|
simp3 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ∧ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) |
69 |
|
imass2 |
⊢ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 → ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) |
70 |
69
|
adantr |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) |
71 |
70
|
3ad2ant2 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ∧ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) → ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) |
72 |
68 71
|
eqsstrd |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ∧ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) |
73 |
72
|
3exp |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
74 |
73
|
com23 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑘 ) ) → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
75 |
67 74
|
syld |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
76 |
75
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) ) |
77 |
76
|
com23 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) → ( 𝑘 ∈ 𝐴 → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) ) |
78 |
77
|
3impia |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) → ( 𝑘 ∈ 𝐴 → ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
79 |
78
|
3imp |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) |
80 |
|
eleq1 |
⊢ ( ( 𝐼 ‘ 𝑘 ) = 𝐽 → ( ( 𝐼 ‘ 𝑘 ) ∈ 𝐵 ↔ 𝐽 ∈ 𝐵 ) ) |
81 |
|
fveq2 |
⊢ ( ( 𝐼 ‘ 𝑘 ) = 𝐽 → ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐻 ‘ 𝐽 ) ) |
82 |
81
|
sseq1d |
⊢ ( ( 𝐼 ‘ 𝑘 ) = 𝐽 → ( ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
83 |
80 82
|
anbi12d |
⊢ ( ( 𝐼 ‘ 𝑘 ) = 𝐽 → ( ( ( 𝐼 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
84 |
83
|
adantl |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( ( ( 𝐼 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
85 |
84
|
3ad2ant3 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) → ( ( ( 𝐼 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ ( 𝐼 ‘ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
86 |
61 79 85
|
mpbi2and |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ 𝐴 ∧ ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) → ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
87 |
86
|
rexlimdv3a |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) → ( ∃ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) → ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
88 |
55 87
|
impbid |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝐺 : 𝐴 ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝐼 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐻 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 ‘ 𝑖 ) ) ) → ( ( 𝐽 ∈ 𝐵 ∧ ( 𝐻 ‘ 𝐽 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝐼 ‘ 𝑘 ) = 𝐽 ) ) ) |