| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrimisgrgric.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
grimdmrel |
⊢ Rel dom GraphIso |
| 3 |
2
|
ovrcl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 5 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 6 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 8 |
1 5 6 7
|
grimprop |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 9 |
|
f1ofun |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun 𝐹 ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → Fun 𝐹 ) |
| 11 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 12 |
11
|
ssex |
⊢ ( 𝑁 ⊆ 𝑉 → 𝑁 ∈ V ) |
| 13 |
|
resfunexg |
⊢ ( ( Fun 𝐹 ∧ 𝑁 ∈ V ) → ( 𝐹 ↾ 𝑁 ) ∈ V ) |
| 14 |
10 12 13
|
syl2an |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 ↾ 𝑁 ) ∈ V ) |
| 15 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 17 |
|
f1ores |
⊢ ( ( 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) |
| 18 |
16 17
|
sylan |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) |
| 19 |
|
simpr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) |
| 20 |
|
vex |
⊢ 𝑔 ∈ V |
| 21 |
20
|
resex |
⊢ ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∈ V |
| 22 |
21
|
a1i |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∈ V ) |
| 23 |
|
f1of1 |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 25 |
24
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 27 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) |
| 28 |
|
f1ores |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 29 |
26 27 28
|
sylancl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 30 |
1 6
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 31 |
|
id |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 32 |
|
difssd |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝒫 𝑉 ∖ { ∅ } ) ⊆ 𝒫 𝑉 ) |
| 33 |
31 32
|
fssd |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) |
| 34 |
30 33
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) |
| 36 |
35
|
anim2i |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ) |
| 37 |
36
|
3adant2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ) |
| 39 |
|
simp2l |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 40 |
39
|
anim1i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) ) |
| 42 |
41
|
ancomd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑁 ⊆ 𝑉 ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
| 43 |
|
simpl2r |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 45 |
|
uhgrimisgrgriclem |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) ) |
| 46 |
38 42 44 45
|
syl3anc |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 48 |
47
|
sseq1d |
⊢ ( 𝑥 = 𝑘 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ) ) |
| 49 |
48
|
rexrab |
⊢ ( ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 50 |
46 49
|
bitr4di |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑗 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ) |
| 52 |
51
|
sseq1d |
⊢ ( 𝑥 = 𝑗 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
| 53 |
52
|
elrab |
⊢ ( 𝑗 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
| 54 |
53
|
a1i |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑗 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
| 55 |
|
f1ofn |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ) |
| 56 |
55 27
|
jctir |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 58 |
57
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 60 |
|
fvelimab |
⊢ ( ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ∈ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑗 ∈ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 62 |
50 54 61
|
3bitr4d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑗 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ 𝑗 ∈ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) ) |
| 63 |
62
|
eqrdv |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } = ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 64 |
63
|
f1oeq3d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) ) |
| 65 |
29 64
|
mpbird |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ) |
| 66 |
|
ssralv |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 67 |
27 66
|
ax-mp |
⊢ ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 68 |
|
elex |
⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ V ) |
| 69 |
68
|
anim1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 70 |
69
|
3anim3i |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ) |
| 71 |
70
|
anim1i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ) |
| 72 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 73 |
|
fvres |
⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
| 74 |
73
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
| 75 |
74
|
fveq2d |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 77 |
76
|
sseq1d |
⊢ ( 𝑥 = 𝑖 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 78 |
77
|
elrab |
⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ↔ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 79 |
78
|
simprbi |
⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) |
| 80 |
79
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) |
| 81 |
|
resima2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 82 |
80 81
|
syl |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 83 |
72 75 82
|
3eqtr4rd |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 85 |
71 84
|
sylanl1 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 86 |
85
|
ralimdva |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 87 |
67 86
|
syl5 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 88 |
87
|
expimpd |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 89 |
88
|
3exp1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 90 |
89
|
com25 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 91 |
90
|
3imp1 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 92 |
91
|
imp |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) |
| 93 |
65 92
|
jca |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 94 |
|
f1oeq1 |
⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ) ) |
| 95 |
|
fveq1 |
⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ℎ ‘ 𝑖 ) = ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) |
| 96 |
95
|
fveq2d |
⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) |
| 97 |
96
|
eqeq2d |
⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 98 |
97
|
ralbidv |
⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 99 |
94 98
|
anbi12d |
⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) ) |
| 100 |
22 93 99
|
spcedv |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 101 |
19 100
|
jca |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 102 |
18 101
|
mpdan |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 103 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ↔ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) ) |
| 104 |
|
imaeq1 |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 105 |
104
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 106 |
105
|
ralbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 107 |
106
|
anbi2d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 108 |
107
|
exbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 109 |
103 108
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 110 |
14 102 109
|
spcedv |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 111 |
|
simpl3 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) |
| 112 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → 𝑁 ⊆ 𝑉 ) |
| 113 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 114 |
113
|
fimassd |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 115 |
114
|
a1d |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( 𝑁 ⊆ 𝑉 → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) ) |
| 116 |
115
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝑁 ⊆ 𝑉 → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) ) |
| 117 |
116
|
imp |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 118 |
|
eqid |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } |
| 119 |
|
eqid |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } |
| 120 |
1 5 6 7 118 119
|
isubgrgrim |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( 𝑁 ⊆ 𝑉 ∧ ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 121 |
111 112 117 120
|
syl12anc |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 122 |
110 121
|
mpbird |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) |
| 123 |
122
|
3exp1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 124 |
123
|
exlimdv |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 125 |
124
|
imp |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) |
| 126 |
8 125
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) |
| 127 |
126
|
expd |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ UHGraph → ( 𝐻 ∈ V → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 128 |
127
|
com12 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐻 ∈ V → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 129 |
128
|
com34 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝑁 ⊆ 𝑉 → ( 𝐻 ∈ V → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 130 |
129
|
3imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐻 ∈ V → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) |
| 131 |
130
|
adantld |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) |
| 132 |
4 131
|
mpd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) |