Step |
Hyp |
Ref |
Expression |
1 |
|
clnbgrisubgrgrim.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
clnbgrisubgrgrim.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
3 |
|
clnbgrisubgrgrim.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) |
4 |
|
clnbgrisubgrgrim.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑌 ) |
5 |
|
clnbgrisubgrgrim.k |
⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } |
6 |
|
clnbgrisubgrgrim.l |
⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
7
|
clnbgrssvtx |
⊢ ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ ( Vtx ‘ 𝐺 ) |
9 |
3 8
|
eqsstri |
⊢ 𝑁 ⊆ ( Vtx ‘ 𝐺 ) |
10 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
11 |
10
|
clnbgrssvtx |
⊢ ( 𝐻 ClNeighbVtx 𝑌 ) ⊆ ( Vtx ‘ 𝐻 ) |
12 |
4 11
|
eqsstri |
⊢ 𝑀 ⊆ ( Vtx ‘ 𝐻 ) |
13 |
7 10 1 2 5 6
|
isubgrgrim |
⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝑀 ⊆ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
14 |
9 12 13
|
mpanr12 |
⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |