| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrisubgrgrim.i |
|- I = ( iEdg ` G ) |
| 2 |
|
clnbgrisubgrgrim.j |
|- J = ( iEdg ` H ) |
| 3 |
|
clnbgrisubgrgrim.n |
|- N = ( G ClNeighbVtx X ) |
| 4 |
|
clnbgrisubgrgrim.m |
|- M = ( H ClNeighbVtx Y ) |
| 5 |
|
clnbgrisubgrgrim.k |
|- K = { x e. dom I | ( I ` x ) C_ N } |
| 6 |
|
clnbgrisubgrgrim.l |
|- L = { x e. dom J | ( J ` x ) C_ M } |
| 7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 8 |
7
|
clnbgrssvtx |
|- ( G ClNeighbVtx X ) C_ ( Vtx ` G ) |
| 9 |
3 8
|
eqsstri |
|- N C_ ( Vtx ` G ) |
| 10 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 11 |
10
|
clnbgrssvtx |
|- ( H ClNeighbVtx Y ) C_ ( Vtx ` H ) |
| 12 |
4 11
|
eqsstri |
|- M C_ ( Vtx ` H ) |
| 13 |
7 10 1 2 5 6
|
isubgrgrim |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ ( Vtx ` G ) /\ M C_ ( Vtx ` H ) ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 14 |
9 12 13
|
mpanr12 |
|- ( ( G e. U /\ H e. T ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |