Step |
Hyp |
Ref |
Expression |
1 |
|
isubgrgrim.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgrgrim.w |
|- W = ( Vtx ` H ) |
3 |
|
isubgrgrim.i |
|- I = ( iEdg ` G ) |
4 |
|
isubgrgrim.j |
|- J = ( iEdg ` H ) |
5 |
|
isubgrgrim.k |
|- K = { x e. dom I | ( I ` x ) C_ N } |
6 |
|
isubgrgrim.l |
|- L = { x e. dom J | ( J ` x ) C_ M } |
7 |
|
ovex |
|- ( G ISubGr N ) e. _V |
8 |
|
ovex |
|- ( H ISubGr M ) e. _V |
9 |
7 8
|
pm3.2i |
|- ( ( G ISubGr N ) e. _V /\ ( H ISubGr M ) e. _V ) |
10 |
|
eqid |
|- ( Vtx ` ( G ISubGr N ) ) = ( Vtx ` ( G ISubGr N ) ) |
11 |
|
eqid |
|- ( Vtx ` ( H ISubGr M ) ) = ( Vtx ` ( H ISubGr M ) ) |
12 |
|
eqid |
|- ( iEdg ` ( G ISubGr N ) ) = ( iEdg ` ( G ISubGr N ) ) |
13 |
|
eqid |
|- ( iEdg ` ( H ISubGr M ) ) = ( iEdg ` ( H ISubGr M ) ) |
14 |
10 11 12 13
|
dfgric2 |
|- ( ( ( G ISubGr N ) e. _V /\ ( H ISubGr M ) e. _V ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : ( Vtx ` ( G ISubGr N ) ) -1-1-onto-> ( Vtx ` ( H ISubGr M ) ) /\ E. g ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) ) ) ) |
15 |
9 14
|
mp1i |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : ( Vtx ` ( G ISubGr N ) ) -1-1-onto-> ( Vtx ` ( H ISubGr M ) ) /\ E. g ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) ) ) ) |
16 |
|
eqidd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> f = f ) |
17 |
1
|
isubgrvtx |
|- ( ( G e. U /\ N C_ V ) -> ( Vtx ` ( G ISubGr N ) ) = N ) |
18 |
17
|
ad2ant2r |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( Vtx ` ( G ISubGr N ) ) = N ) |
19 |
2
|
isubgrvtx |
|- ( ( H e. T /\ M C_ W ) -> ( Vtx ` ( H ISubGr M ) ) = M ) |
20 |
19
|
ad2ant2l |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( Vtx ` ( H ISubGr M ) ) = M ) |
21 |
16 18 20
|
f1oeq123d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( f : ( Vtx ` ( G ISubGr N ) ) -1-1-onto-> ( Vtx ` ( H ISubGr M ) ) <-> f : N -1-1-onto-> M ) ) |
22 |
|
eqidd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> g = g ) |
23 |
1 3
|
isubgriedg |
|- ( ( G e. U /\ N C_ V ) -> ( iEdg ` ( G ISubGr N ) ) = ( I |` { x e. dom I | ( I ` x ) C_ N } ) ) |
24 |
23
|
ad2ant2r |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( iEdg ` ( G ISubGr N ) ) = ( I |` { x e. dom I | ( I ` x ) C_ N } ) ) |
25 |
24
|
dmeqd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> dom ( iEdg ` ( G ISubGr N ) ) = dom ( I |` { x e. dom I | ( I ` x ) C_ N } ) ) |
26 |
|
ssrab2 |
|- { x e. dom I | ( I ` x ) C_ N } C_ dom I |
27 |
26
|
a1i |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> { x e. dom I | ( I ` x ) C_ N } C_ dom I ) |
28 |
|
ssdmres |
|- ( { x e. dom I | ( I ` x ) C_ N } C_ dom I <-> dom ( I |` { x e. dom I | ( I ` x ) C_ N } ) = { x e. dom I | ( I ` x ) C_ N } ) |
29 |
27 28
|
sylib |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> dom ( I |` { x e. dom I | ( I ` x ) C_ N } ) = { x e. dom I | ( I ` x ) C_ N } ) |
30 |
5
|
eqcomi |
|- { x e. dom I | ( I ` x ) C_ N } = K |
31 |
30
|
a1i |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> { x e. dom I | ( I ` x ) C_ N } = K ) |
32 |
25 29 31
|
3eqtrd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> dom ( iEdg ` ( G ISubGr N ) ) = K ) |
33 |
2 4
|
isubgriedg |
|- ( ( H e. T /\ M C_ W ) -> ( iEdg ` ( H ISubGr M ) ) = ( J |` { x e. dom J | ( J ` x ) C_ M } ) ) |
34 |
33
|
ad2ant2l |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( iEdg ` ( H ISubGr M ) ) = ( J |` { x e. dom J | ( J ` x ) C_ M } ) ) |
35 |
34
|
dmeqd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> dom ( iEdg ` ( H ISubGr M ) ) = dom ( J |` { x e. dom J | ( J ` x ) C_ M } ) ) |
36 |
|
ssrab2 |
|- { x e. dom J | ( J ` x ) C_ M } C_ dom J |
37 |
36
|
a1i |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> { x e. dom J | ( J ` x ) C_ M } C_ dom J ) |
38 |
|
ssdmres |
|- ( { x e. dom J | ( J ` x ) C_ M } C_ dom J <-> dom ( J |` { x e. dom J | ( J ` x ) C_ M } ) = { x e. dom J | ( J ` x ) C_ M } ) |
39 |
37 38
|
sylib |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> dom ( J |` { x e. dom J | ( J ` x ) C_ M } ) = { x e. dom J | ( J ` x ) C_ M } ) |
40 |
6
|
eqcomi |
|- { x e. dom J | ( J ` x ) C_ M } = L |
41 |
40
|
a1i |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> { x e. dom J | ( J ` x ) C_ M } = L ) |
42 |
35 39 41
|
3eqtrd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> dom ( iEdg ` ( H ISubGr M ) ) = L ) |
43 |
22 32 42
|
f1oeq123d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) <-> g : K -1-1-onto-> L ) ) |
44 |
43
|
anbi1d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) <-> ( g : K -1-1-onto-> L /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) ) ) |
45 |
31
|
reseq2d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( I |` { x e. dom I | ( I ` x ) C_ N } ) = ( I |` K ) ) |
46 |
24 45
|
eqtrd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( iEdg ` ( G ISubGr N ) ) = ( I |` K ) ) |
47 |
46
|
fveq1d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( iEdg ` ( G ISubGr N ) ) ` i ) = ( ( I |` K ) ` i ) ) |
48 |
47
|
imaeq2d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( f " ( ( I |` K ) ` i ) ) ) |
49 |
40
|
reseq2i |
|- ( J |` { x e. dom J | ( J ` x ) C_ M } ) = ( J |` L ) |
50 |
34 49
|
eqtrdi |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( iEdg ` ( H ISubGr M ) ) = ( J |` L ) ) |
51 |
50
|
fveq1d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) = ( ( J |` L ) ` ( g ` i ) ) ) |
52 |
48 51
|
eqeq12d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) <-> ( f " ( ( I |` K ) ` i ) ) = ( ( J |` L ) ` ( g ` i ) ) ) ) |
53 |
32 52
|
raleqbidv |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) <-> A. i e. K ( f " ( ( I |` K ) ` i ) ) = ( ( J |` L ) ` ( g ` i ) ) ) ) |
54 |
53
|
adantr |
|- ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) -> ( A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) <-> A. i e. K ( f " ( ( I |` K ) ` i ) ) = ( ( J |` L ) ` ( g ` i ) ) ) ) |
55 |
|
fvres |
|- ( i e. K -> ( ( I |` K ) ` i ) = ( I ` i ) ) |
56 |
55
|
adantl |
|- ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ i e. K ) -> ( ( I |` K ) ` i ) = ( I ` i ) ) |
57 |
56
|
imaeq2d |
|- ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ i e. K ) -> ( f " ( ( I |` K ) ` i ) ) = ( f " ( I ` i ) ) ) |
58 |
57
|
adantlr |
|- ( ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) /\ i e. K ) -> ( f " ( ( I |` K ) ` i ) ) = ( f " ( I ` i ) ) ) |
59 |
|
f1of |
|- ( g : K -1-1-onto-> L -> g : K --> L ) |
60 |
59
|
adantl |
|- ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) -> g : K --> L ) |
61 |
60
|
ffvelcdmda |
|- ( ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) /\ i e. K ) -> ( g ` i ) e. L ) |
62 |
61
|
fvresd |
|- ( ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) /\ i e. K ) -> ( ( J |` L ) ` ( g ` i ) ) = ( J ` ( g ` i ) ) ) |
63 |
58 62
|
eqeq12d |
|- ( ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) /\ i e. K ) -> ( ( f " ( ( I |` K ) ` i ) ) = ( ( J |` L ) ` ( g ` i ) ) <-> ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
64 |
63
|
ralbidva |
|- ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) -> ( A. i e. K ( f " ( ( I |` K ) ` i ) ) = ( ( J |` L ) ` ( g ` i ) ) <-> A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
65 |
54 64
|
bitrd |
|- ( ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) /\ g : K -1-1-onto-> L ) -> ( A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) <-> A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
66 |
65
|
pm5.32da |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( g : K -1-1-onto-> L /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) <-> ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
67 |
44 66
|
bitrd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) <-> ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
68 |
67
|
exbidv |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( E. g ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) <-> E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
69 |
21 68
|
anbi12d |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( f : ( Vtx ` ( G ISubGr N ) ) -1-1-onto-> ( Vtx ` ( H ISubGr M ) ) /\ E. g ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) ) <-> ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
70 |
69
|
exbidv |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( E. f ( f : ( Vtx ` ( G ISubGr N ) ) -1-1-onto-> ( Vtx ` ( H ISubGr M ) ) /\ E. g ( g : dom ( iEdg ` ( G ISubGr N ) ) -1-1-onto-> dom ( iEdg ` ( H ISubGr M ) ) /\ A. i e. dom ( iEdg ` ( G ISubGr N ) ) ( f " ( ( iEdg ` ( G ISubGr N ) ) ` i ) ) = ( ( iEdg ` ( H ISubGr M ) ) ` ( g ` i ) ) ) ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
71 |
15 70
|
bitrd |
|- ( ( ( G e. U /\ H e. T ) /\ ( N C_ V /\ M C_ W ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |