| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgriedg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isubgriedg.e |
|- E = ( iEdg ` G ) |
| 3 |
1 2
|
isisubgr |
|- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
| 4 |
3
|
fveq2d |
|- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( iEdg ` <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) ) |
| 5 |
1
|
fvexi |
|- V e. _V |
| 6 |
5
|
ssex |
|- ( S C_ V -> S e. _V ) |
| 7 |
2
|
fvexi |
|- E e. _V |
| 8 |
7
|
a1i |
|- ( ( G e. W /\ S C_ V ) -> E e. _V ) |
| 9 |
8
|
resexd |
|- ( ( G e. W /\ S C_ V ) -> ( E |` { x e. dom E | ( E ` x ) C_ S } ) e. _V ) |
| 10 |
|
opiedgfv |
|- ( ( S e. _V /\ ( E |` { x e. dom E | ( E ` x ) C_ S } ) e. _V ) -> ( iEdg ` <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| 11 |
6 9 10
|
syl2an2 |
|- ( ( G e. W /\ S C_ V ) -> ( iEdg ` <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| 12 |
4 11
|
eqtrd |
|- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |