Step |
Hyp |
Ref |
Expression |
1 |
|
isisubgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isisubgr.e |
|- E = ( iEdg ` G ) |
3 |
|
elex |
|- ( G e. W -> G e. _V ) |
4 |
3
|
adantr |
|- ( ( G e. W /\ S C_ V ) -> G e. _V ) |
5 |
1
|
fvexi |
|- V e. _V |
6 |
5
|
a1i |
|- ( S C_ V -> V e. _V ) |
7 |
|
id |
|- ( S C_ V -> S C_ V ) |
8 |
6 7
|
sselpwd |
|- ( S C_ V -> S e. ~P V ) |
9 |
8
|
adantl |
|- ( ( G e. W /\ S C_ V ) -> S e. ~P V ) |
10 |
|
opex |
|- <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. e. _V |
11 |
10
|
a1i |
|- ( ( G e. W /\ S C_ V ) -> <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. e. _V ) |
12 |
|
simpr |
|- ( ( g = G /\ v = S ) -> v = S ) |
13 |
|
fvexd |
|- ( ( g = G /\ v = S ) -> ( iEdg ` g ) e. _V ) |
14 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
15 |
14 2
|
eqtr4di |
|- ( g = G -> ( iEdg ` g ) = E ) |
16 |
15
|
eqeq2d |
|- ( g = G -> ( e = ( iEdg ` g ) <-> e = E ) ) |
17 |
16
|
adantr |
|- ( ( g = G /\ v = S ) -> ( e = ( iEdg ` g ) <-> e = E ) ) |
18 |
|
simpr |
|- ( ( v = S /\ e = E ) -> e = E ) |
19 |
|
dmeq |
|- ( e = E -> dom e = dom E ) |
20 |
19
|
adantl |
|- ( ( v = S /\ e = E ) -> dom e = dom E ) |
21 |
|
fveq1 |
|- ( e = E -> ( e ` x ) = ( E ` x ) ) |
22 |
21
|
adantl |
|- ( ( v = S /\ e = E ) -> ( e ` x ) = ( E ` x ) ) |
23 |
|
simpl |
|- ( ( v = S /\ e = E ) -> v = S ) |
24 |
22 23
|
sseq12d |
|- ( ( v = S /\ e = E ) -> ( ( e ` x ) C_ v <-> ( E ` x ) C_ S ) ) |
25 |
20 24
|
rabeqbidv |
|- ( ( v = S /\ e = E ) -> { x e. dom e | ( e ` x ) C_ v } = { x e. dom E | ( E ` x ) C_ S } ) |
26 |
18 25
|
reseq12d |
|- ( ( v = S /\ e = E ) -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
27 |
26
|
ex |
|- ( v = S -> ( e = E -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) ) |
28 |
27
|
adantl |
|- ( ( g = G /\ v = S ) -> ( e = E -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) ) |
29 |
17 28
|
sylbid |
|- ( ( g = G /\ v = S ) -> ( e = ( iEdg ` g ) -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) ) |
30 |
29
|
imp |
|- ( ( ( g = G /\ v = S ) /\ e = ( iEdg ` g ) ) -> ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
31 |
13 30
|
csbied |
|- ( ( g = G /\ v = S ) -> [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
32 |
12 31
|
opeq12d |
|- ( ( g = G /\ v = S ) -> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
33 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
34 |
33 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
35 |
34
|
pweqd |
|- ( g = G -> ~P ( Vtx ` g ) = ~P V ) |
36 |
|
df-isubgr |
|- ISubGr = ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |
37 |
32 35 36
|
ovmpox |
|- ( ( G e. _V /\ S e. ~P V /\ <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. e. _V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
38 |
4 9 11 37
|
syl3anc |
|- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |