| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cisubgr |
|- ISubGr |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vv |
|- v |
| 4 |
|
cvtx |
|- Vtx |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Vtx ` g ) |
| 7 |
6
|
cpw |
|- ~P ( Vtx ` g ) |
| 8 |
3
|
cv |
|- v |
| 9 |
|
ciedg |
|- iEdg |
| 10 |
5 9
|
cfv |
|- ( iEdg ` g ) |
| 11 |
|
ve |
|- e |
| 12 |
11
|
cv |
|- e |
| 13 |
|
vx |
|- x |
| 14 |
12
|
cdm |
|- dom e |
| 15 |
13
|
cv |
|- x |
| 16 |
15 12
|
cfv |
|- ( e ` x ) |
| 17 |
16 8
|
wss |
|- ( e ` x ) C_ v |
| 18 |
17 13 14
|
crab |
|- { x e. dom e | ( e ` x ) C_ v } |
| 19 |
12 18
|
cres |
|- ( e |` { x e. dom e | ( e ` x ) C_ v } ) |
| 20 |
11 10 19
|
csb |
|- [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) |
| 21 |
8 20
|
cop |
|- <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. |
| 22 |
1 3 2 7 21
|
cmpo |
|- ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |
| 23 |
0 22
|
wceq |
|- ISubGr = ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |