Description: Define the function mapping graphs and subsets of their vertices to their induced subgraphs. Asubgraph induced by a subset of vertices of a graph is a subgraph of the graph which contains all edges of the graph that join vertices of the subgraph (see section I.1 in Bollobas p. 2 or section 1.1 in Diestel p. 4). Although a graph may be given in any meaningful representation, its induced subgraphs are always ordered pairs of vertices and edges. (Contributed by AV, 27-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-isubgr | |- ISubGr = ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cisubgr | |- ISubGr |
|
1 | vg | |- g |
|
2 | cvv | |- _V |
|
3 | vv | |- v |
|
4 | cvtx | |- Vtx |
|
5 | 1 | cv | |- g |
6 | 5 4 | cfv | |- ( Vtx ` g ) |
7 | 6 | cpw | |- ~P ( Vtx ` g ) |
8 | 3 | cv | |- v |
9 | ciedg | |- iEdg |
|
10 | 5 9 | cfv | |- ( iEdg ` g ) |
11 | ve | |- e |
|
12 | 11 | cv | |- e |
13 | vx | |- x |
|
14 | 12 | cdm | |- dom e |
15 | 13 | cv | |- x |
16 | 15 12 | cfv | |- ( e ` x ) |
17 | 16 8 | wss | |- ( e ` x ) C_ v |
18 | 17 13 14 | crab | |- { x e. dom e | ( e ` x ) C_ v } |
19 | 12 18 | cres | |- ( e |` { x e. dom e | ( e ` x ) C_ v } ) |
20 | 11 10 19 | csb | |- [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) |
21 | 8 20 | cop | |- <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. |
22 | 1 3 2 7 21 | cmpo | |- ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |
23 | 0 22 | wceq | |- ISubGr = ( g e. _V , v e. ~P ( Vtx ` g ) |-> <. v , [_ ( iEdg ` g ) / e ]_ ( e |` { x e. dom e | ( e ` x ) C_ v } ) >. ) |