| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cisubgr |
⊢ ISubGr |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vv |
⊢ 𝑣 |
| 4 |
|
cvtx |
⊢ Vtx |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Vtx ‘ 𝑔 ) |
| 8 |
3
|
cv |
⊢ 𝑣 |
| 9 |
|
ciedg |
⊢ iEdg |
| 10 |
5 9
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
| 11 |
|
ve |
⊢ 𝑒 |
| 12 |
11
|
cv |
⊢ 𝑒 |
| 13 |
|
vx |
⊢ 𝑥 |
| 14 |
12
|
cdm |
⊢ dom 𝑒 |
| 15 |
13
|
cv |
⊢ 𝑥 |
| 16 |
15 12
|
cfv |
⊢ ( 𝑒 ‘ 𝑥 ) |
| 17 |
16 8
|
wss |
⊢ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 |
| 18 |
17 13 14
|
crab |
⊢ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } |
| 19 |
12 18
|
cres |
⊢ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) |
| 20 |
11 10 19
|
csb |
⊢ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) |
| 21 |
8 20
|
cop |
⊢ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 |
| 22 |
1 3 2 7 21
|
cmpo |
⊢ ( 𝑔 ∈ V , 𝑣 ∈ 𝒫 ( Vtx ‘ 𝑔 ) ↦ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 ) |
| 23 |
0 22
|
wceq |
⊢ ISubGr = ( 𝑔 ∈ V , 𝑣 ∈ 𝒫 ( Vtx ‘ 𝑔 ) ↦ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 ) |