Step |
Hyp |
Ref |
Expression |
0 |
|
cisubgr |
⊢ ISubGr |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vv |
⊢ 𝑣 |
4 |
|
cvtx |
⊢ Vtx |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Vtx ‘ 𝑔 ) |
8 |
3
|
cv |
⊢ 𝑣 |
9 |
|
ciedg |
⊢ iEdg |
10 |
5 9
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
11 |
|
ve |
⊢ 𝑒 |
12 |
11
|
cv |
⊢ 𝑒 |
13 |
|
vx |
⊢ 𝑥 |
14 |
12
|
cdm |
⊢ dom 𝑒 |
15 |
13
|
cv |
⊢ 𝑥 |
16 |
15 12
|
cfv |
⊢ ( 𝑒 ‘ 𝑥 ) |
17 |
16 8
|
wss |
⊢ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 |
18 |
17 13 14
|
crab |
⊢ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } |
19 |
12 18
|
cres |
⊢ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) |
20 |
11 10 19
|
csb |
⊢ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) |
21 |
8 20
|
cop |
⊢ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 |
22 |
1 3 2 7 21
|
cmpo |
⊢ ( 𝑔 ∈ V , 𝑣 ∈ 𝒫 ( Vtx ‘ 𝑔 ) ↦ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 ) |
23 |
0 22
|
wceq |
⊢ ISubGr = ( 𝑔 ∈ V , 𝑣 ∈ 𝒫 ( Vtx ‘ 𝑔 ) ↦ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 ) |