| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isisubgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
isisubgr.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝐺 ∈ V ) |
| 5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝑆 ⊆ 𝑉 → 𝑉 ∈ V ) |
| 7 |
|
id |
⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ⊆ 𝑉 ) |
| 8 |
6 7
|
sselpwd |
⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ∈ 𝒫 𝑉 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ∈ 𝒫 𝑉 ) |
| 10 |
|
opex |
⊢ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ∈ V ) |
| 12 |
|
simpr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → 𝑣 = 𝑆 ) |
| 13 |
|
fvexd |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( iEdg ‘ 𝑔 ) ∈ V ) |
| 14 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 15 |
14 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = 𝐸 ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑒 = ( iEdg ‘ 𝑔 ) ↔ 𝑒 = 𝐸 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( 𝑒 = ( iEdg ‘ 𝑔 ) ↔ 𝑒 = 𝐸 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → 𝑒 = 𝐸 ) |
| 19 |
|
dmeq |
⊢ ( 𝑒 = 𝐸 → dom 𝑒 = dom 𝐸 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → dom 𝑒 = dom 𝐸 ) |
| 21 |
|
fveq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑥 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → ( 𝑒 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑥 ) ) |
| 23 |
|
simpl |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑆 ) |
| 24 |
22 23
|
sseq12d |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → ( ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 ↔ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 25 |
20 24
|
rabeqbidv |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } = { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) |
| 26 |
18 25
|
reseq12d |
⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 27 |
26
|
ex |
⊢ ( 𝑣 = 𝑆 → ( 𝑒 = 𝐸 → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( 𝑒 = 𝐸 → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) ) |
| 29 |
17 28
|
sylbid |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 31 |
13 30
|
csbied |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 32 |
12 31
|
opeq12d |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 33 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
| 34 |
33 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 35 |
34
|
pweqd |
⊢ ( 𝑔 = 𝐺 → 𝒫 ( Vtx ‘ 𝑔 ) = 𝒫 𝑉 ) |
| 36 |
|
df-isubgr |
⊢ ISubGr = ( 𝑔 ∈ V , 𝑣 ∈ 𝒫 ( Vtx ‘ 𝑔 ) ↦ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 ) |
| 37 |
32 35 36
|
ovmpox |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ∧ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ∈ V ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 38 |
4 9 11 37
|
syl3anc |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |