Metamath Proof Explorer


Theorem isisubgr

Description: The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025)

Ref Expression
Hypotheses isisubgr.v V = Vtx G
isisubgr.e E = iEdg G
Assertion isisubgr G W S V G ISubGr S = S E x dom E | E x S

Proof

Step Hyp Ref Expression
1 isisubgr.v V = Vtx G
2 isisubgr.e E = iEdg G
3 elex G W G V
4 3 adantr G W S V G V
5 1 fvexi V V
6 5 a1i S V V V
7 id S V S V
8 6 7 sselpwd S V S 𝒫 V
9 8 adantl G W S V S 𝒫 V
10 opex S E x dom E | E x S V
11 10 a1i G W S V S E x dom E | E x S V
12 simpr g = G v = S v = S
13 fvexd g = G v = S iEdg g V
14 fveq2 g = G iEdg g = iEdg G
15 14 2 eqtr4di g = G iEdg g = E
16 15 eqeq2d g = G e = iEdg g e = E
17 16 adantr g = G v = S e = iEdg g e = E
18 simpr v = S e = E e = E
19 dmeq e = E dom e = dom E
20 19 adantl v = S e = E dom e = dom E
21 fveq1 e = E e x = E x
22 21 adantl v = S e = E e x = E x
23 simpl v = S e = E v = S
24 22 23 sseq12d v = S e = E e x v E x S
25 20 24 rabeqbidv v = S e = E x dom e | e x v = x dom E | E x S
26 18 25 reseq12d v = S e = E e x dom e | e x v = E x dom E | E x S
27 26 ex v = S e = E e x dom e | e x v = E x dom E | E x S
28 27 adantl g = G v = S e = E e x dom e | e x v = E x dom E | E x S
29 17 28 sylbid g = G v = S e = iEdg g e x dom e | e x v = E x dom E | E x S
30 29 imp g = G v = S e = iEdg g e x dom e | e x v = E x dom E | E x S
31 13 30 csbied g = G v = S iEdg g / e e x dom e | e x v = E x dom E | E x S
32 12 31 opeq12d g = G v = S v iEdg g / e e x dom e | e x v = S E x dom E | E x S
33 fveq2 g = G Vtx g = Vtx G
34 33 1 eqtr4di g = G Vtx g = V
35 34 pweqd g = G 𝒫 Vtx g = 𝒫 V
36 df-isubgr ISubGr = g V , v 𝒫 Vtx g v iEdg g / e e x dom e | e x v
37 32 35 36 ovmpox G V S 𝒫 V S E x dom E | E x S V G ISubGr S = S E x dom E | E x S
38 4 9 11 37 syl3anc G W S V G ISubGr S = S E x dom E | E x S