Metamath Proof Explorer


Theorem isubgriedg

Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025)

Ref Expression
Hypotheses isubgriedg.v 𝑉 = ( Vtx ‘ 𝐺 )
isubgriedg.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion isubgriedg ( ( 𝐺𝑊𝑆𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) )

Proof

Step Hyp Ref Expression
1 isubgriedg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isubgriedg.e 𝐸 = ( iEdg ‘ 𝐺 )
3 1 2 isisubgr ( ( 𝐺𝑊𝑆𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = ⟨ 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) ⟩ )
4 3 fveq2d ( ( 𝐺𝑊𝑆𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ ⟨ 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) ⟩ ) )
5 1 fvexi 𝑉 ∈ V
6 5 ssex ( 𝑆𝑉𝑆 ∈ V )
7 2 fvexi 𝐸 ∈ V
8 7 a1i ( ( 𝐺𝑊𝑆𝑉 ) → 𝐸 ∈ V )
9 8 resexd ( ( 𝐺𝑊𝑆𝑉 ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) ∈ V )
10 opiedgfv ( ( 𝑆 ∈ V ∧ ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) ∈ V ) → ( iEdg ‘ ⟨ 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) ⟩ ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) )
11 6 9 10 syl2an2 ( ( 𝐺𝑊𝑆𝑉 ) → ( iEdg ‘ ⟨ 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) ⟩ ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) )
12 4 11 eqtrd ( ( 𝐺𝑊𝑆𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑆 } ) )