Step |
Hyp |
Ref |
Expression |
1 |
|
isubgriedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isubgriedg.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
isisubgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) ) |
5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
6 |
5
|
ssex |
⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ∈ V ) |
7 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
8 |
7
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝐸 ∈ V ) |
9 |
8
|
resexd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) |
10 |
|
opiedgfv |
⊢ ( ( 𝑆 ∈ V ∧ ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) → ( iEdg ‘ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
11 |
6 9 10
|
syl2an2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
12 |
4 11
|
eqtrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |