Step |
Hyp |
Ref |
Expression |
1 |
|
isubgriedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isubgriedg.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
ssidd |
⊢ ( 𝐺 ∈ UHGraph → 𝑉 ⊆ 𝑉 ) |
4 |
1 2
|
isisubgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 ) |
5 |
3 4
|
mpdan |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 ) |
6 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
7 |
|
funrel |
⊢ ( Fun 𝐸 → Rel 𝐸 ) |
8 |
6 7
|
syl |
⊢ ( 𝐺 ∈ UHGraph → Rel 𝐸 ) |
9 |
1 2
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
10 |
|
ffvelcdm |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
11 |
|
eldifi |
⊢ ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑥 ) ∈ 𝒫 𝑉 ) |
12 |
11
|
elpwid |
⊢ ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 ) |
14 |
13
|
rabeqcda |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } = dom 𝐸 ) |
15 |
14
|
eqimsscd |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) |
16 |
9 15
|
syl |
⊢ ( 𝐺 ∈ UHGraph → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) |
17 |
|
relssres |
⊢ ( ( Rel 𝐸 ∧ dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) = 𝐸 ) |
18 |
8 16 17
|
syl2anc |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) = 𝐸 ) |
19 |
18
|
opeq2d |
⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 = 〈 𝑉 , 𝐸 〉 ) |
20 |
5 19
|
eqtrd |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , 𝐸 〉 ) |