Metamath Proof Explorer


Theorem isubgrvtxuhgr

Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025)

Ref Expression
Hypotheses isubgriedg.v 𝑉 = ( Vtx ‘ 𝐺 )
isubgriedg.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion isubgrvtxuhgr ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = ⟨ 𝑉 , 𝐸 ⟩ )

Proof

Step Hyp Ref Expression
1 isubgriedg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isubgriedg.e 𝐸 = ( iEdg ‘ 𝐺 )
3 ssidd ( 𝐺 ∈ UHGraph → 𝑉𝑉 )
4 1 2 isisubgr ( ( 𝐺 ∈ UHGraph ∧ 𝑉𝑉 ) → ( 𝐺 ISubGr 𝑉 ) = ⟨ 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } ) ⟩ )
5 3 4 mpdan ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = ⟨ 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } ) ⟩ )
6 2 uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐸 )
7 funrel ( Fun 𝐸 → Rel 𝐸 )
8 6 7 syl ( 𝐺 ∈ UHGraph → Rel 𝐸 )
9 1 2 uhgrf ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )
10 ffvelcdm ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) )
11 eldifi ( ( 𝐸𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸𝑥 ) ∈ 𝒫 𝑉 )
12 11 elpwid ( ( 𝐸𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸𝑥 ) ⊆ 𝑉 )
13 10 12 syl ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸𝑥 ) ⊆ 𝑉 )
14 13 rabeqcda ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } = dom 𝐸 )
15 14 eqimsscd ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } )
16 9 15 syl ( 𝐺 ∈ UHGraph → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } )
17 relssres ( ( Rel 𝐸 ∧ dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } ) = 𝐸 )
18 8 16 17 syl2anc ( 𝐺 ∈ UHGraph → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } ) = 𝐸 )
19 18 opeq2d ( 𝐺 ∈ UHGraph → ⟨ 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) ⊆ 𝑉 } ) ⟩ = ⟨ 𝑉 , 𝐸 ⟩ )
20 5 19 eqtrd ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = ⟨ 𝑉 , 𝐸 ⟩ )