| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgriedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
isubgriedg.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
ssidd |
⊢ ( 𝐺 ∈ UHGraph → 𝑉 ⊆ 𝑉 ) |
| 4 |
1 2
|
isisubgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 ) |
| 5 |
3 4
|
mpdan |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 ) |
| 6 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 7 |
|
funrel |
⊢ ( Fun 𝐸 → Rel 𝐸 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐺 ∈ UHGraph → Rel 𝐸 ) |
| 9 |
1 2
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 10 |
|
ffvelcdm |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 11 |
|
eldifi |
⊢ ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑥 ) ∈ 𝒫 𝑉 ) |
| 12 |
11
|
elpwid |
⊢ ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 ) |
| 14 |
13
|
rabeqcda |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } = dom 𝐸 ) |
| 15 |
14
|
eqimsscd |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) |
| 16 |
9 15
|
syl |
⊢ ( 𝐺 ∈ UHGraph → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) |
| 17 |
|
relssres |
⊢ ( ( Rel 𝐸 ∧ dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) = 𝐸 ) |
| 18 |
8 16 17
|
syl2anc |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) = 𝐸 ) |
| 19 |
18
|
opeq2d |
⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 = 〈 𝑉 , 𝐸 〉 ) |
| 20 |
5 19
|
eqtrd |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , 𝐸 〉 ) |