Metamath Proof Explorer


Theorem isubgrvtxuhgr

Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025)

Ref Expression
Hypotheses isubgriedg.v V = Vtx G
isubgriedg.e E = iEdg G
Assertion isubgrvtxuhgr G UHGraph G ISubGr V = V E

Proof

Step Hyp Ref Expression
1 isubgriedg.v V = Vtx G
2 isubgriedg.e E = iEdg G
3 ssidd G UHGraph V V
4 1 2 isisubgr G UHGraph V V G ISubGr V = V E x dom E | E x V
5 3 4 mpdan G UHGraph G ISubGr V = V E x dom E | E x V
6 2 uhgrfun G UHGraph Fun E
7 funrel Fun E Rel E
8 6 7 syl G UHGraph Rel E
9 1 2 uhgrf G UHGraph E : dom E 𝒫 V
10 ffvelcdm E : dom E 𝒫 V x dom E E x 𝒫 V
11 eldifi E x 𝒫 V E x 𝒫 V
12 11 elpwid E x 𝒫 V E x V
13 10 12 syl E : dom E 𝒫 V x dom E E x V
14 13 rabeqcda E : dom E 𝒫 V x dom E | E x V = dom E
15 14 eqimsscd E : dom E 𝒫 V dom E x dom E | E x V
16 9 15 syl G UHGraph dom E x dom E | E x V
17 relssres Rel E dom E x dom E | E x V E x dom E | E x V = E
18 8 16 17 syl2anc G UHGraph E x dom E | E x V = E
19 18 opeq2d G UHGraph V E x dom E | E x V = V E
20 5 19 eqtrd G UHGraph G ISubGr V = V E