Metamath Proof Explorer


Theorem eqimsscd

Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025)

Ref Expression
Hypothesis eqimssd.1 φA=B
Assertion eqimsscd φBA

Proof

Step Hyp Ref Expression
1 eqimssd.1 φA=B
2 ssid AA
3 1 2 eqsstrrdi φBA