Metamath Proof Explorer


Theorem isubgrvtxuhgr

Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025)

Ref Expression
Hypotheses isubgriedg.v
|- V = ( Vtx ` G )
isubgriedg.e
|- E = ( iEdg ` G )
Assertion isubgrvtxuhgr
|- ( G e. UHGraph -> ( G ISubGr V ) = <. V , E >. )

Proof

Step Hyp Ref Expression
1 isubgriedg.v
 |-  V = ( Vtx ` G )
2 isubgriedg.e
 |-  E = ( iEdg ` G )
3 ssidd
 |-  ( G e. UHGraph -> V C_ V )
4 1 2 isisubgr
 |-  ( ( G e. UHGraph /\ V C_ V ) -> ( G ISubGr V ) = <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. )
5 3 4 mpdan
 |-  ( G e. UHGraph -> ( G ISubGr V ) = <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. )
6 2 uhgrfun
 |-  ( G e. UHGraph -> Fun E )
7 funrel
 |-  ( Fun E -> Rel E )
8 6 7 syl
 |-  ( G e. UHGraph -> Rel E )
9 1 2 uhgrf
 |-  ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) )
10 ffvelcdm
 |-  ( ( E : dom E --> ( ~P V \ { (/) } ) /\ x e. dom E ) -> ( E ` x ) e. ( ~P V \ { (/) } ) )
11 eldifi
 |-  ( ( E ` x ) e. ( ~P V \ { (/) } ) -> ( E ` x ) e. ~P V )
12 11 elpwid
 |-  ( ( E ` x ) e. ( ~P V \ { (/) } ) -> ( E ` x ) C_ V )
13 10 12 syl
 |-  ( ( E : dom E --> ( ~P V \ { (/) } ) /\ x e. dom E ) -> ( E ` x ) C_ V )
14 13 rabeqcda
 |-  ( E : dom E --> ( ~P V \ { (/) } ) -> { x e. dom E | ( E ` x ) C_ V } = dom E )
15 14 eqimsscd
 |-  ( E : dom E --> ( ~P V \ { (/) } ) -> dom E C_ { x e. dom E | ( E ` x ) C_ V } )
16 9 15 syl
 |-  ( G e. UHGraph -> dom E C_ { x e. dom E | ( E ` x ) C_ V } )
17 relssres
 |-  ( ( Rel E /\ dom E C_ { x e. dom E | ( E ` x ) C_ V } ) -> ( E |` { x e. dom E | ( E ` x ) C_ V } ) = E )
18 8 16 17 syl2anc
 |-  ( G e. UHGraph -> ( E |` { x e. dom E | ( E ` x ) C_ V } ) = E )
19 18 opeq2d
 |-  ( G e. UHGraph -> <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. = <. V , E >. )
20 5 19 eqtrd
 |-  ( G e. UHGraph -> ( G ISubGr V ) = <. V , E >. )