Step |
Hyp |
Ref |
Expression |
1 |
|
isubgriedg.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgriedg.e |
|- E = ( iEdg ` G ) |
3 |
|
ssidd |
|- ( G e. UHGraph -> V C_ V ) |
4 |
1 2
|
isisubgr |
|- ( ( G e. UHGraph /\ V C_ V ) -> ( G ISubGr V ) = <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. ) |
5 |
3 4
|
mpdan |
|- ( G e. UHGraph -> ( G ISubGr V ) = <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. ) |
6 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun E ) |
7 |
|
funrel |
|- ( Fun E -> Rel E ) |
8 |
6 7
|
syl |
|- ( G e. UHGraph -> Rel E ) |
9 |
1 2
|
uhgrf |
|- ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) ) |
10 |
|
ffvelcdm |
|- ( ( E : dom E --> ( ~P V \ { (/) } ) /\ x e. dom E ) -> ( E ` x ) e. ( ~P V \ { (/) } ) ) |
11 |
|
eldifi |
|- ( ( E ` x ) e. ( ~P V \ { (/) } ) -> ( E ` x ) e. ~P V ) |
12 |
11
|
elpwid |
|- ( ( E ` x ) e. ( ~P V \ { (/) } ) -> ( E ` x ) C_ V ) |
13 |
10 12
|
syl |
|- ( ( E : dom E --> ( ~P V \ { (/) } ) /\ x e. dom E ) -> ( E ` x ) C_ V ) |
14 |
13
|
rabeqcda |
|- ( E : dom E --> ( ~P V \ { (/) } ) -> { x e. dom E | ( E ` x ) C_ V } = dom E ) |
15 |
14
|
eqimsscd |
|- ( E : dom E --> ( ~P V \ { (/) } ) -> dom E C_ { x e. dom E | ( E ` x ) C_ V } ) |
16 |
9 15
|
syl |
|- ( G e. UHGraph -> dom E C_ { x e. dom E | ( E ` x ) C_ V } ) |
17 |
|
relssres |
|- ( ( Rel E /\ dom E C_ { x e. dom E | ( E ` x ) C_ V } ) -> ( E |` { x e. dom E | ( E ` x ) C_ V } ) = E ) |
18 |
8 16 17
|
syl2anc |
|- ( G e. UHGraph -> ( E |` { x e. dom E | ( E ` x ) C_ V } ) = E ) |
19 |
18
|
opeq2d |
|- ( G e. UHGraph -> <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. = <. V , E >. ) |
20 |
5 19
|
eqtrd |
|- ( G e. UHGraph -> ( G ISubGr V ) = <. V , E >. ) |