Step |
Hyp |
Ref |
Expression |
1 |
|
isubgredg.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgredg.e |
|- E = ( Edg ` G ) |
3 |
|
isubgredg.h |
|- H = ( G ISubGr S ) |
4 |
|
isubgredg.i |
|- I = ( Edg ` H ) |
5 |
3
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` ( G ISubGr S ) ) |
6 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
7 |
1 6
|
isubgriedg |
|- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
8 |
5 7
|
eqtrid |
|- ( ( G e. W /\ S C_ V ) -> ( iEdg ` H ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
9 |
8
|
rneqd |
|- ( ( G e. W /\ S C_ V ) -> ran ( iEdg ` H ) = ran ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
10 |
|
resss |
|- ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( iEdg ` G ) |
11 |
|
rnss |
|- ( ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( iEdg ` G ) -> ran ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ran ( iEdg ` G ) ) |
12 |
10 11
|
mp1i |
|- ( ( G e. W /\ S C_ V ) -> ran ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ran ( iEdg ` G ) ) |
13 |
9 12
|
eqsstrd |
|- ( ( G e. W /\ S C_ V ) -> ran ( iEdg ` H ) C_ ran ( iEdg ` G ) ) |
14 |
|
edgval |
|- ( Edg ` H ) = ran ( iEdg ` H ) |
15 |
4 14
|
eqtri |
|- I = ran ( iEdg ` H ) |
16 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
17 |
2 16
|
eqtri |
|- E = ran ( iEdg ` G ) |
18 |
13 15 17
|
3sstr4g |
|- ( ( G e. W /\ S C_ V ) -> I C_ E ) |