Metamath Proof Explorer


Theorem isubgrgrim

Description: Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025)

Ref Expression
Hypotheses isubgrgrim.v V = Vtx G
isubgrgrim.w W = Vtx H
isubgrgrim.i I = iEdg G
isubgrgrim.j J = iEdg H
isubgrgrim.k K = x dom I | I x N
isubgrgrim.l L = x dom J | J x M
Assertion isubgrgrim G U H T N V M W G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i

Proof

Step Hyp Ref Expression
1 isubgrgrim.v V = Vtx G
2 isubgrgrim.w W = Vtx H
3 isubgrgrim.i I = iEdg G
4 isubgrgrim.j J = iEdg H
5 isubgrgrim.k K = x dom I | I x N
6 isubgrgrim.l L = x dom J | J x M
7 ovex G ISubGr N V
8 ovex H ISubGr M V
9 7 8 pm3.2i G ISubGr N V H ISubGr M V
10 eqid Vtx G ISubGr N = Vtx G ISubGr N
11 eqid Vtx H ISubGr M = Vtx H ISubGr M
12 eqid iEdg G ISubGr N = iEdg G ISubGr N
13 eqid iEdg H ISubGr M = iEdg H ISubGr M
14 10 11 12 13 dfgric2 G ISubGr N V H ISubGr M V G ISubGr N 𝑔𝑟 H ISubGr M f f : Vtx G ISubGr N 1-1 onto Vtx H ISubGr M g g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i
15 9 14 mp1i G U H T N V M W G ISubGr N 𝑔𝑟 H ISubGr M f f : Vtx G ISubGr N 1-1 onto Vtx H ISubGr M g g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i
16 eqidd G U H T N V M W f = f
17 1 isubgrvtx G U N V Vtx G ISubGr N = N
18 17 ad2ant2r G U H T N V M W Vtx G ISubGr N = N
19 2 isubgrvtx H T M W Vtx H ISubGr M = M
20 19 ad2ant2l G U H T N V M W Vtx H ISubGr M = M
21 16 18 20 f1oeq123d G U H T N V M W f : Vtx G ISubGr N 1-1 onto Vtx H ISubGr M f : N 1-1 onto M
22 eqidd G U H T N V M W g = g
23 1 3 isubgriedg G U N V iEdg G ISubGr N = I x dom I | I x N
24 23 ad2ant2r G U H T N V M W iEdg G ISubGr N = I x dom I | I x N
25 24 dmeqd G U H T N V M W dom iEdg G ISubGr N = dom I x dom I | I x N
26 ssrab2 x dom I | I x N dom I
27 26 a1i G U H T N V M W x dom I | I x N dom I
28 ssdmres x dom I | I x N dom I dom I x dom I | I x N = x dom I | I x N
29 27 28 sylib G U H T N V M W dom I x dom I | I x N = x dom I | I x N
30 5 eqcomi x dom I | I x N = K
31 30 a1i G U H T N V M W x dom I | I x N = K
32 25 29 31 3eqtrd G U H T N V M W dom iEdg G ISubGr N = K
33 2 4 isubgriedg H T M W iEdg H ISubGr M = J x dom J | J x M
34 33 ad2ant2l G U H T N V M W iEdg H ISubGr M = J x dom J | J x M
35 34 dmeqd G U H T N V M W dom iEdg H ISubGr M = dom J x dom J | J x M
36 ssrab2 x dom J | J x M dom J
37 36 a1i G U H T N V M W x dom J | J x M dom J
38 ssdmres x dom J | J x M dom J dom J x dom J | J x M = x dom J | J x M
39 37 38 sylib G U H T N V M W dom J x dom J | J x M = x dom J | J x M
40 6 eqcomi x dom J | J x M = L
41 40 a1i G U H T N V M W x dom J | J x M = L
42 35 39 41 3eqtrd G U H T N V M W dom iEdg H ISubGr M = L
43 22 32 42 f1oeq123d G U H T N V M W g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M g : K 1-1 onto L
44 43 anbi1d G U H T N V M W g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i g : K 1-1 onto L i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i
45 31 reseq2d G U H T N V M W I x dom I | I x N = I K
46 24 45 eqtrd G U H T N V M W iEdg G ISubGr N = I K
47 46 fveq1d G U H T N V M W iEdg G ISubGr N i = I K i
48 47 imaeq2d G U H T N V M W f iEdg G ISubGr N i = f I K i
49 40 reseq2i J x dom J | J x M = J L
50 34 49 eqtrdi G U H T N V M W iEdg H ISubGr M = J L
51 50 fveq1d G U H T N V M W iEdg H ISubGr M g i = J L g i
52 48 51 eqeq12d G U H T N V M W f iEdg G ISubGr N i = iEdg H ISubGr M g i f I K i = J L g i
53 32 52 raleqbidv G U H T N V M W i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i i K f I K i = J L g i
54 53 adantr G U H T N V M W g : K 1-1 onto L i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i i K f I K i = J L g i
55 fvres i K I K i = I i
56 55 adantl G U H T N V M W i K I K i = I i
57 56 imaeq2d G U H T N V M W i K f I K i = f I i
58 57 adantlr G U H T N V M W g : K 1-1 onto L i K f I K i = f I i
59 f1of g : K 1-1 onto L g : K L
60 59 adantl G U H T N V M W g : K 1-1 onto L g : K L
61 60 ffvelcdmda G U H T N V M W g : K 1-1 onto L i K g i L
62 61 fvresd G U H T N V M W g : K 1-1 onto L i K J L g i = J g i
63 58 62 eqeq12d G U H T N V M W g : K 1-1 onto L i K f I K i = J L g i f I i = J g i
64 63 ralbidva G U H T N V M W g : K 1-1 onto L i K f I K i = J L g i i K f I i = J g i
65 54 64 bitrd G U H T N V M W g : K 1-1 onto L i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i i K f I i = J g i
66 65 pm5.32da G U H T N V M W g : K 1-1 onto L i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i g : K 1-1 onto L i K f I i = J g i
67 44 66 bitrd G U H T N V M W g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i g : K 1-1 onto L i K f I i = J g i
68 67 exbidv G U H T N V M W g g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i g g : K 1-1 onto L i K f I i = J g i
69 21 68 anbi12d G U H T N V M W f : Vtx G ISubGr N 1-1 onto Vtx H ISubGr M g g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
70 69 exbidv G U H T N V M W f f : Vtx G ISubGr N 1-1 onto Vtx H ISubGr M g g : dom iEdg G ISubGr N 1-1 onto dom iEdg H ISubGr M i dom iEdg G ISubGr N f iEdg G ISubGr N i = iEdg H ISubGr M g i f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
71 15 70 bitrd G U H T N V M W G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i