| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgrgrim.v |
|
| 2 |
|
isubgrgrim.w |
|
| 3 |
|
isubgrgrim.i |
|
| 4 |
|
isubgrgrim.j |
|
| 5 |
|
isubgrgrim.k |
|
| 6 |
|
isubgrgrim.l |
|
| 7 |
|
ovex |
|
| 8 |
|
ovex |
|
| 9 |
7 8
|
pm3.2i |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
10 11 12 13
|
dfgric2 |
|
| 15 |
9 14
|
mp1i |
|
| 16 |
|
eqidd |
|
| 17 |
1
|
isubgrvtx |
|
| 18 |
17
|
ad2ant2r |
|
| 19 |
2
|
isubgrvtx |
|
| 20 |
19
|
ad2ant2l |
|
| 21 |
16 18 20
|
f1oeq123d |
|
| 22 |
|
eqidd |
|
| 23 |
1 3
|
isubgriedg |
|
| 24 |
23
|
ad2ant2r |
|
| 25 |
24
|
dmeqd |
|
| 26 |
|
ssrab2 |
|
| 27 |
26
|
a1i |
|
| 28 |
|
ssdmres |
|
| 29 |
27 28
|
sylib |
|
| 30 |
5
|
eqcomi |
|
| 31 |
30
|
a1i |
|
| 32 |
25 29 31
|
3eqtrd |
|
| 33 |
2 4
|
isubgriedg |
|
| 34 |
33
|
ad2ant2l |
|
| 35 |
34
|
dmeqd |
|
| 36 |
|
ssrab2 |
|
| 37 |
36
|
a1i |
|
| 38 |
|
ssdmres |
|
| 39 |
37 38
|
sylib |
|
| 40 |
6
|
eqcomi |
|
| 41 |
40
|
a1i |
|
| 42 |
35 39 41
|
3eqtrd |
|
| 43 |
22 32 42
|
f1oeq123d |
|
| 44 |
43
|
anbi1d |
|
| 45 |
31
|
reseq2d |
|
| 46 |
24 45
|
eqtrd |
|
| 47 |
46
|
fveq1d |
|
| 48 |
47
|
imaeq2d |
|
| 49 |
40
|
reseq2i |
|
| 50 |
34 49
|
eqtrdi |
|
| 51 |
50
|
fveq1d |
|
| 52 |
48 51
|
eqeq12d |
|
| 53 |
32 52
|
raleqbidv |
|
| 54 |
53
|
adantr |
|
| 55 |
|
fvres |
|
| 56 |
55
|
adantl |
|
| 57 |
56
|
imaeq2d |
|
| 58 |
57
|
adantlr |
|
| 59 |
|
f1of |
|
| 60 |
59
|
adantl |
|
| 61 |
60
|
ffvelcdmda |
|
| 62 |
61
|
fvresd |
|
| 63 |
58 62
|
eqeq12d |
|
| 64 |
63
|
ralbidva |
|
| 65 |
54 64
|
bitrd |
|
| 66 |
65
|
pm5.32da |
|
| 67 |
44 66
|
bitrd |
|
| 68 |
67
|
exbidv |
|
| 69 |
21 68
|
anbi12d |
|
| 70 |
69
|
exbidv |
|
| 71 |
15 70
|
bitrd |
|