Step |
Hyp |
Ref |
Expression |
1 |
|
isubgrgrim.v |
|
2 |
|
isubgrgrim.w |
|
3 |
|
isubgrgrim.i |
|
4 |
|
isubgrgrim.j |
|
5 |
|
isubgrgrim.k |
|
6 |
|
isubgrgrim.l |
|
7 |
|
ovex |
|
8 |
|
ovex |
|
9 |
7 8
|
pm3.2i |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
10 11 12 13
|
dfgric2 |
|
15 |
9 14
|
mp1i |
|
16 |
|
eqidd |
|
17 |
1
|
isubgrvtx |
|
18 |
17
|
ad2ant2r |
|
19 |
2
|
isubgrvtx |
|
20 |
19
|
ad2ant2l |
|
21 |
16 18 20
|
f1oeq123d |
|
22 |
|
eqidd |
|
23 |
1 3
|
isubgriedg |
|
24 |
23
|
ad2ant2r |
|
25 |
24
|
dmeqd |
|
26 |
|
ssrab2 |
|
27 |
26
|
a1i |
|
28 |
|
ssdmres |
|
29 |
27 28
|
sylib |
|
30 |
5
|
eqcomi |
|
31 |
30
|
a1i |
|
32 |
25 29 31
|
3eqtrd |
|
33 |
2 4
|
isubgriedg |
|
34 |
33
|
ad2ant2l |
|
35 |
34
|
dmeqd |
|
36 |
|
ssrab2 |
|
37 |
36
|
a1i |
|
38 |
|
ssdmres |
|
39 |
37 38
|
sylib |
|
40 |
6
|
eqcomi |
|
41 |
40
|
a1i |
|
42 |
35 39 41
|
3eqtrd |
|
43 |
22 32 42
|
f1oeq123d |
|
44 |
43
|
anbi1d |
|
45 |
31
|
reseq2d |
|
46 |
24 45
|
eqtrd |
|
47 |
46
|
fveq1d |
|
48 |
47
|
imaeq2d |
|
49 |
40
|
reseq2i |
|
50 |
34 49
|
eqtrdi |
|
51 |
50
|
fveq1d |
|
52 |
48 51
|
eqeq12d |
|
53 |
32 52
|
raleqbidv |
|
54 |
53
|
adantr |
|
55 |
|
fvres |
|
56 |
55
|
adantl |
|
57 |
56
|
imaeq2d |
|
58 |
57
|
adantlr |
|
59 |
|
f1of |
|
60 |
59
|
adantl |
|
61 |
60
|
ffvelcdmda |
|
62 |
61
|
fvresd |
|
63 |
58 62
|
eqeq12d |
|
64 |
63
|
ralbidva |
|
65 |
54 64
|
bitrd |
|
66 |
65
|
pm5.32da |
|
67 |
44 66
|
bitrd |
|
68 |
67
|
exbidv |
|
69 |
21 68
|
anbi12d |
|
70 |
69
|
exbidv |
|
71 |
15 70
|
bitrd |
|