Metamath Proof Explorer


Theorem uhgrimisgrgriclem

Description: Lemma for uhgrimisgrgric . (Contributed by AV, 31-May-2025)

Ref Expression
Assertion uhgrimisgrgriclem F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N k A G k N I k = J

Proof

Step Hyp Ref Expression
1 fveq2 k = I -1 J G k = G I -1 J
2 1 sseq1d k = I -1 J G k N G I -1 J N
3 fveqeq2 k = I -1 J I k = J I I -1 J = J
4 2 3 anbi12d k = I -1 J G k N I k = J G I -1 J N I I -1 J = J
5 simpr N V I : A 1-1 onto B I : A 1-1 onto B
6 5 3ad2ant2 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i I : A 1-1 onto B
7 simpl J B H J F N J B
8 f1ocnvdm I : A 1-1 onto B J B I -1 J A
9 6 7 8 syl2an F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N I -1 J A
10 2fveq3 i = I -1 J H I i = H I I -1 J
11 fveq2 i = I -1 J G i = G I -1 J
12 11 imaeq2d i = I -1 J F G i = F G I -1 J
13 10 12 eqeq12d i = I -1 J H I i = F G i H I I -1 J = F G I -1 J
14 13 rspcv I -1 J A i A H I i = F G i H I I -1 J = F G I -1 J
15 14 adantl F : V 1-1 onto W G : A 𝒫 V I -1 J A i A H I i = F G i H I I -1 J = F G I -1 J
16 7 adantl F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N J B
17 f1ocnvfv2 I : A 1-1 onto B J B I I -1 J = J
18 5 16 17 syl2anr F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N N V I : A 1-1 onto B I I -1 J = J
19 18 fveqeq2d F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N N V I : A 1-1 onto B H I I -1 J = F G I -1 J H J = F G I -1 J
20 sseq1 H J = F G I -1 J H J F N F G I -1 J F N
21 20 adantl F : V 1-1 onto W G : A 𝒫 V I -1 J A H J = F G I -1 J H J F N F G I -1 J F N
22 f1of1 F : V 1-1 onto W F : V 1-1 W
23 22 adantr F : V 1-1 onto W G : A 𝒫 V F : V 1-1 W
24 23 adantr F : V 1-1 onto W G : A 𝒫 V I -1 J A F : V 1-1 W
25 24 3ad2ant1 F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B F : V 1-1 W
26 simp1lr F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B G : A 𝒫 V
27 simp1r F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B I -1 J A
28 26 27 ffvelcdmd F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B G I -1 J 𝒫 V
29 28 elpwid F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B G I -1 J V
30 simpl N V I : A 1-1 onto B N V
31 30 3ad2ant3 F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B N V
32 f1imass F : V 1-1 W G I -1 J V N V F G I -1 J F N G I -1 J N
33 25 29 31 32 syl12anc F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B F G I -1 J F N G I -1 J N
34 33 biimpd F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B F G I -1 J F N G I -1 J N
35 34 3exp F : V 1-1 onto W G : A 𝒫 V I -1 J A J B N V I : A 1-1 onto B F G I -1 J F N G I -1 J N
36 35 com24 F : V 1-1 onto W G : A 𝒫 V I -1 J A F G I -1 J F N N V I : A 1-1 onto B J B G I -1 J N
37 36 adantr F : V 1-1 onto W G : A 𝒫 V I -1 J A H J = F G I -1 J F G I -1 J F N N V I : A 1-1 onto B J B G I -1 J N
38 21 37 sylbid F : V 1-1 onto W G : A 𝒫 V I -1 J A H J = F G I -1 J H J F N N V I : A 1-1 onto B J B G I -1 J N
39 38 ex F : V 1-1 onto W G : A 𝒫 V I -1 J A H J = F G I -1 J H J F N N V I : A 1-1 onto B J B G I -1 J N
40 39 com25 F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N N V I : A 1-1 onto B H J = F G I -1 J G I -1 J N
41 40 imp42 F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N N V I : A 1-1 onto B H J = F G I -1 J G I -1 J N
42 19 41 sylbid F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N N V I : A 1-1 onto B H I I -1 J = F G I -1 J G I -1 J N
43 42 ex F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N N V I : A 1-1 onto B H I I -1 J = F G I -1 J G I -1 J N
44 43 com23 F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N H I I -1 J = F G I -1 J N V I : A 1-1 onto B G I -1 J N
45 44 ex F : V 1-1 onto W G : A 𝒫 V I -1 J A J B H J F N H I I -1 J = F G I -1 J N V I : A 1-1 onto B G I -1 J N
46 45 com23 F : V 1-1 onto W G : A 𝒫 V I -1 J A H I I -1 J = F G I -1 J J B H J F N N V I : A 1-1 onto B G I -1 J N
47 15 46 syld F : V 1-1 onto W G : A 𝒫 V I -1 J A i A H I i = F G i J B H J F N N V I : A 1-1 onto B G I -1 J N
48 47 ex F : V 1-1 onto W G : A 𝒫 V I -1 J A i A H I i = F G i J B H J F N N V I : A 1-1 onto B G I -1 J N
49 48 com25 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N I -1 J A G I -1 J N
50 49 3imp1 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N I -1 J A G I -1 J N
51 9 50 mpd F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N G I -1 J N
52 6 7 17 syl2an F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N I I -1 J = J
53 51 52 jca F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N G I -1 J N I I -1 J = J
54 4 9 53 rspcedvdw F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N k A G k N I k = J
55 54 ex F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N k A G k N I k = J
56 f1of I : A 1-1 onto B I : A B
57 56 adantl N V I : A 1-1 onto B I : A B
58 57 3ad2ant2 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i I : A B
59 58 3ad2ant1 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J I : A B
60 simp2 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J k A
61 59 60 ffvelcdmd F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J I k B
62 2fveq3 i = k H I i = H I k
63 fveq2 i = k G i = G k
64 63 imaeq2d i = k F G i = F G k
65 62 64 eqeq12d i = k H I i = F G i H I k = F G k
66 65 rspcv k A i A H I i = F G i H I k = F G k
67 66 adantl F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A i A H I i = F G i H I k = F G k
68 simp3 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A G k N I k = J H I k = F G k H I k = F G k
69 imass2 G k N F G k F N
70 69 adantr G k N I k = J F G k F N
71 70 3ad2ant2 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A G k N I k = J H I k = F G k F G k F N
72 68 71 eqsstrd F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A G k N I k = J H I k = F G k H I k F N
73 72 3exp F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A G k N I k = J H I k = F G k H I k F N
74 73 com23 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A H I k = F G k G k N I k = J H I k F N
75 67 74 syld F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A i A H I i = F G i G k N I k = J H I k F N
76 75 ex F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B k A i A H I i = F G i G k N I k = J H I k F N
77 76 com23 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J H I k F N
78 77 3impia F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J H I k F N
79 78 3imp F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J H I k F N
80 eleq1 I k = J I k B J B
81 fveq2 I k = J H I k = H J
82 81 sseq1d I k = J H I k F N H J F N
83 80 82 anbi12d I k = J I k B H I k F N J B H J F N
84 83 adantl G k N I k = J I k B H I k F N J B H J F N
85 84 3ad2ant3 F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J I k B H I k F N J B H J F N
86 61 79 85 mpbi2and F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J J B H J F N
87 86 rexlimdv3a F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i k A G k N I k = J J B H J F N
88 55 87 impbid F : V 1-1 onto W G : A 𝒫 V N V I : A 1-1 onto B i A H I i = F G i J B H J F N k A G k N I k = J