Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
1
|
sseq1d |
|
3 |
|
fveqeq2 |
|
4 |
2 3
|
anbi12d |
|
5 |
|
simpr |
|
6 |
5
|
3ad2ant2 |
|
7 |
|
simpl |
|
8 |
|
f1ocnvdm |
|
9 |
6 7 8
|
syl2an |
|
10 |
|
2fveq3 |
|
11 |
|
fveq2 |
|
12 |
11
|
imaeq2d |
|
13 |
10 12
|
eqeq12d |
|
14 |
13
|
rspcv |
|
15 |
14
|
adantl |
|
16 |
7
|
adantl |
|
17 |
|
f1ocnvfv2 |
|
18 |
5 16 17
|
syl2anr |
|
19 |
18
|
fveqeq2d |
|
20 |
|
sseq1 |
|
21 |
20
|
adantl |
|
22 |
|
f1of1 |
|
23 |
22
|
adantr |
|
24 |
23
|
adantr |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
simp1lr |
|
27 |
|
simp1r |
|
28 |
26 27
|
ffvelcdmd |
|
29 |
28
|
elpwid |
|
30 |
|
simpl |
|
31 |
30
|
3ad2ant3 |
|
32 |
|
f1imass |
|
33 |
25 29 31 32
|
syl12anc |
|
34 |
33
|
biimpd |
|
35 |
34
|
3exp |
|
36 |
35
|
com24 |
|
37 |
36
|
adantr |
|
38 |
21 37
|
sylbid |
|
39 |
38
|
ex |
|
40 |
39
|
com25 |
|
41 |
40
|
imp42 |
|
42 |
19 41
|
sylbid |
|
43 |
42
|
ex |
|
44 |
43
|
com23 |
|
45 |
44
|
ex |
|
46 |
45
|
com23 |
|
47 |
15 46
|
syld |
|
48 |
47
|
ex |
|
49 |
48
|
com25 |
|
50 |
49
|
3imp1 |
|
51 |
9 50
|
mpd |
|
52 |
6 7 17
|
syl2an |
|
53 |
51 52
|
jca |
|
54 |
4 9 53
|
rspcedvdw |
|
55 |
54
|
ex |
|
56 |
|
f1of |
|
57 |
56
|
adantl |
|
58 |
57
|
3ad2ant2 |
|
59 |
58
|
3ad2ant1 |
|
60 |
|
simp2 |
|
61 |
59 60
|
ffvelcdmd |
|
62 |
|
2fveq3 |
|
63 |
|
fveq2 |
|
64 |
63
|
imaeq2d |
|
65 |
62 64
|
eqeq12d |
|
66 |
65
|
rspcv |
|
67 |
66
|
adantl |
|
68 |
|
simp3 |
|
69 |
|
imass2 |
|
70 |
69
|
adantr |
|
71 |
70
|
3ad2ant2 |
|
72 |
68 71
|
eqsstrd |
|
73 |
72
|
3exp |
|
74 |
73
|
com23 |
|
75 |
67 74
|
syld |
|
76 |
75
|
ex |
|
77 |
76
|
com23 |
|
78 |
77
|
3impia |
|
79 |
78
|
3imp |
|
80 |
|
eleq1 |
|
81 |
|
fveq2 |
|
82 |
81
|
sseq1d |
|
83 |
80 82
|
anbi12d |
|
84 |
83
|
adantl |
|
85 |
84
|
3ad2ant3 |
|
86 |
61 79 85
|
mpbi2and |
|
87 |
86
|
rexlimdv3a |
|
88 |
55 87
|
impbid |
|