Metamath Proof Explorer


Theorem f1imass

Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imass F:A1-1BCADAFCFDCD

Proof

Step Hyp Ref Expression
1 simplrl F:A1-1BCADAFCFDCA
2 1 sseld F:A1-1BCADAFCFDaCaA
3 simplr F:A1-1BCADAFCFDaAFCFD
4 3 sseld F:A1-1BCADAFCFDaAFaFCFaFD
5 simplll F:A1-1BCADAFCFDaAF:A1-1B
6 simpr F:A1-1BCADAFCFDaAaA
7 simp1rl F:A1-1BCADAFCFDaACA
8 7 3expa F:A1-1BCADAFCFDaACA
9 f1elima F:A1-1BaACAFaFCaC
10 5 6 8 9 syl3anc F:A1-1BCADAFCFDaAFaFCaC
11 simp1rr F:A1-1BCADAFCFDaADA
12 11 3expa F:A1-1BCADAFCFDaADA
13 f1elima F:A1-1BaADAFaFDaD
14 5 6 12 13 syl3anc F:A1-1BCADAFCFDaAFaFDaD
15 4 10 14 3imtr3d F:A1-1BCADAFCFDaAaCaD
16 15 ex F:A1-1BCADAFCFDaAaCaD
17 2 16 syld F:A1-1BCADAFCFDaCaCaD
18 17 pm2.43d F:A1-1BCADAFCFDaCaD
19 18 ssrdv F:A1-1BCADAFCFDCD
20 19 ex F:A1-1BCADAFCFDCD
21 imass2 CDFCFD
22 20 21 impbid1 F:A1-1BCADAFCFDCD