Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( k = ( `' I ` J ) -> ( G ` k ) = ( G ` ( `' I ` J ) ) ) |
2 |
1
|
sseq1d |
|- ( k = ( `' I ` J ) -> ( ( G ` k ) C_ N <-> ( G ` ( `' I ` J ) ) C_ N ) ) |
3 |
|
fveqeq2 |
|- ( k = ( `' I ` J ) -> ( ( I ` k ) = J <-> ( I ` ( `' I ` J ) ) = J ) ) |
4 |
2 3
|
anbi12d |
|- ( k = ( `' I ` J ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) <-> ( ( G ` ( `' I ` J ) ) C_ N /\ ( I ` ( `' I ` J ) ) = J ) ) ) |
5 |
|
simpr |
|- ( ( N C_ V /\ I : A -1-1-onto-> B ) -> I : A -1-1-onto-> B ) |
6 |
5
|
3ad2ant2 |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> I : A -1-1-onto-> B ) |
7 |
|
simpl |
|- ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> J e. B ) |
8 |
|
f1ocnvdm |
|- ( ( I : A -1-1-onto-> B /\ J e. B ) -> ( `' I ` J ) e. A ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( `' I ` J ) e. A ) |
10 |
|
2fveq3 |
|- ( i = ( `' I ` J ) -> ( H ` ( I ` i ) ) = ( H ` ( I ` ( `' I ` J ) ) ) ) |
11 |
|
fveq2 |
|- ( i = ( `' I ` J ) -> ( G ` i ) = ( G ` ( `' I ` J ) ) ) |
12 |
11
|
imaeq2d |
|- ( i = ( `' I ` J ) -> ( F " ( G ` i ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) |
13 |
10 12
|
eqeq12d |
|- ( i = ( `' I ` J ) -> ( ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) <-> ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
14 |
13
|
rspcv |
|- ( ( `' I ` J ) e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
16 |
7
|
adantl |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> J e. B ) |
17 |
|
f1ocnvfv2 |
|- ( ( I : A -1-1-onto-> B /\ J e. B ) -> ( I ` ( `' I ` J ) ) = J ) |
18 |
5 16 17
|
syl2anr |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( I ` ( `' I ` J ) ) = J ) |
19 |
18
|
fveqeq2d |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) <-> ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
20 |
|
sseq1 |
|- ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( H ` J ) C_ ( F " N ) <-> ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) ) ) |
21 |
20
|
adantl |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) -> ( ( H ` J ) C_ ( F " N ) <-> ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) ) ) |
22 |
|
f1of1 |
|- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
23 |
22
|
adantr |
|- ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) -> F : V -1-1-> W ) |
24 |
23
|
adantr |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> F : V -1-1-> W ) |
25 |
24
|
3ad2ant1 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> F : V -1-1-> W ) |
26 |
|
simp1lr |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> G : A --> ~P V ) |
27 |
|
simp1r |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( `' I ` J ) e. A ) |
28 |
26 27
|
ffvelcdmd |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( G ` ( `' I ` J ) ) e. ~P V ) |
29 |
28
|
elpwid |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( G ` ( `' I ` J ) ) C_ V ) |
30 |
|
simpl |
|- ( ( N C_ V /\ I : A -1-1-onto-> B ) -> N C_ V ) |
31 |
30
|
3ad2ant3 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> N C_ V ) |
32 |
|
f1imass |
|- ( ( F : V -1-1-> W /\ ( ( G ` ( `' I ` J ) ) C_ V /\ N C_ V ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) <-> ( G ` ( `' I ` J ) ) C_ N ) ) |
33 |
25 29 31 32
|
syl12anc |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) <-> ( G ` ( `' I ` J ) ) C_ N ) ) |
34 |
33
|
biimpd |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( G ` ( `' I ` J ) ) C_ N ) ) |
35 |
34
|
3exp |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( J e. B -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
36 |
35
|
com24 |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
37 |
36
|
adantr |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
38 |
21 37
|
sylbid |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) -> ( ( H ` J ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
39 |
38
|
ex |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( H ` J ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
40 |
39
|
com25 |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( J e. B -> ( ( H ` J ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
41 |
40
|
imp42 |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) |
42 |
19 41
|
sylbid |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) |
43 |
42
|
ex |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) |
44 |
43
|
com23 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) |
45 |
44
|
ex |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
46 |
45
|
com23 |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
47 |
15 46
|
syld |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
48 |
47
|
ex |
|- ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) -> ( ( `' I ` J ) e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
49 |
48
|
com25 |
|- ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( `' I ` J ) e. A -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
50 |
49
|
3imp1 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( `' I ` J ) e. A -> ( G ` ( `' I ` J ) ) C_ N ) ) |
51 |
9 50
|
mpd |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) |
52 |
6 7 17
|
syl2an |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( I ` ( `' I ` J ) ) = J ) |
53 |
51 52
|
jca |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( G ` ( `' I ` J ) ) C_ N /\ ( I ` ( `' I ` J ) ) = J ) ) |
54 |
4 9 53
|
rspcedvdw |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) |
55 |
54
|
ex |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) ) |
56 |
|
f1of |
|- ( I : A -1-1-onto-> B -> I : A --> B ) |
57 |
56
|
adantl |
|- ( ( N C_ V /\ I : A -1-1-onto-> B ) -> I : A --> B ) |
58 |
57
|
3ad2ant2 |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> I : A --> B ) |
59 |
58
|
3ad2ant1 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> I : A --> B ) |
60 |
|
simp2 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> k e. A ) |
61 |
59 60
|
ffvelcdmd |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( I ` k ) e. B ) |
62 |
|
2fveq3 |
|- ( i = k -> ( H ` ( I ` i ) ) = ( H ` ( I ` k ) ) ) |
63 |
|
fveq2 |
|- ( i = k -> ( G ` i ) = ( G ` k ) ) |
64 |
63
|
imaeq2d |
|- ( i = k -> ( F " ( G ` i ) ) = ( F " ( G ` k ) ) ) |
65 |
62 64
|
eqeq12d |
|- ( i = k -> ( ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) <-> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) ) |
66 |
65
|
rspcv |
|- ( k e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) ) |
67 |
66
|
adantl |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) ) |
68 |
|
simp3 |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) /\ ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) -> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) |
69 |
|
imass2 |
|- ( ( G ` k ) C_ N -> ( F " ( G ` k ) ) C_ ( F " N ) ) |
70 |
69
|
adantr |
|- ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( F " ( G ` k ) ) C_ ( F " N ) ) |
71 |
70
|
3ad2ant2 |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) /\ ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) -> ( F " ( G ` k ) ) C_ ( F " N ) ) |
72 |
68 71
|
eqsstrd |
|- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) /\ ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) |
73 |
72
|
3exp |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
74 |
73
|
com23 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
75 |
67 74
|
syld |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
76 |
75
|
ex |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( k e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) ) |
77 |
76
|
com23 |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( k e. A -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) ) |
78 |
77
|
3impia |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( k e. A -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
79 |
78
|
3imp |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) |
80 |
|
eleq1 |
|- ( ( I ` k ) = J -> ( ( I ` k ) e. B <-> J e. B ) ) |
81 |
|
fveq2 |
|- ( ( I ` k ) = J -> ( H ` ( I ` k ) ) = ( H ` J ) ) |
82 |
81
|
sseq1d |
|- ( ( I ` k ) = J -> ( ( H ` ( I ` k ) ) C_ ( F " N ) <-> ( H ` J ) C_ ( F " N ) ) ) |
83 |
80 82
|
anbi12d |
|- ( ( I ` k ) = J -> ( ( ( I ` k ) e. B /\ ( H ` ( I ` k ) ) C_ ( F " N ) ) <-> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
84 |
83
|
adantl |
|- ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( ( ( I ` k ) e. B /\ ( H ` ( I ` k ) ) C_ ( F " N ) ) <-> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
85 |
84
|
3ad2ant3 |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( ( ( I ` k ) e. B /\ ( H ` ( I ` k ) ) C_ ( F " N ) ) <-> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
86 |
61 79 85
|
mpbi2and |
|- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) |
87 |
86
|
rexlimdv3a |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
88 |
55 87
|
impbid |
|- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) <-> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) ) |