Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrimisgrgric.v |
|- V = ( Vtx ` G ) |
2 |
|
grimdmrel |
|- Rel dom GraphIso |
3 |
2
|
ovrcl |
|- ( F e. ( G GraphIso H ) -> ( G e. _V /\ H e. _V ) ) |
4 |
3
|
3ad2ant2 |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G e. _V /\ H e. _V ) ) |
5 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
6 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
7 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
8 |
1 5 6 7
|
grimprop |
|- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
9 |
|
f1ofun |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> Fun F ) |
10 |
9
|
3ad2ant1 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> Fun F ) |
11 |
1
|
fvexi |
|- V e. _V |
12 |
11
|
ssex |
|- ( N C_ V -> N e. _V ) |
13 |
|
resfunexg |
|- ( ( Fun F /\ N e. _V ) -> ( F |` N ) e. _V ) |
14 |
10 12 13
|
syl2an |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F |` N ) e. _V ) |
15 |
|
f1of1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V -1-1-> ( Vtx ` H ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> F : V -1-1-> ( Vtx ` H ) ) |
17 |
|
f1ores |
|- ( ( F : V -1-1-> ( Vtx ` H ) /\ N C_ V ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
18 |
16 17
|
sylan |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
19 |
|
simpr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
20 |
|
vex |
|- g e. _V |
21 |
20
|
resex |
|- ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) e. _V |
22 |
21
|
a1i |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) e. _V ) |
23 |
|
f1of1 |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
24 |
23
|
adantr |
|- ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
25 |
24
|
3ad2ant2 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
27 |
|
ssrab2 |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) |
28 |
|
f1ores |
|- ( ( g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
29 |
26 27 28
|
sylancl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
30 |
1 6
|
uhgrf |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
31 |
|
id |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
32 |
|
difssd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( ~P V \ { (/) } ) C_ ~P V ) |
33 |
31 32
|
fssd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
34 |
30 33
|
syl |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
35 |
34
|
adantr |
|- ( ( G e. UHGraph /\ H e. _V ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
36 |
35
|
anim2i |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
37 |
36
|
3adant2 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
39 |
|
simp2l |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
40 |
39
|
anim1i |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ N C_ V ) ) |
41 |
40
|
adantr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ N C_ V ) ) |
42 |
41
|
ancomd |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( N C_ V /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
43 |
|
simpl2r |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
44 |
43
|
adantr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
45 |
|
uhgrimisgrgriclem |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) /\ ( N C_ V /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) ) |
46 |
38 42 44 45
|
syl3anc |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) ) |
47 |
|
fveq2 |
|- ( x = k -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` k ) ) |
48 |
47
|
sseq1d |
|- ( x = k -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` k ) C_ N ) ) |
49 |
48
|
rexrab |
|- ( E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) |
50 |
46 49
|
bitr4di |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
51 |
|
fveq2 |
|- ( x = j -> ( ( iEdg ` H ) ` x ) = ( ( iEdg ` H ) ` j ) ) |
52 |
51
|
sseq1d |
|- ( x = j -> ( ( ( iEdg ` H ) ` x ) C_ ( F " N ) <-> ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) |
53 |
52
|
elrab |
|- ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) |
54 |
53
|
a1i |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) ) |
55 |
|
f1ofn |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g Fn dom ( iEdg ` G ) ) |
56 |
55 27
|
jctir |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
57 |
56
|
adantr |
|- ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
58 |
57
|
3ad2ant2 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
60 |
|
fvelimab |
|- ( ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) -> ( j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
61 |
59 60
|
syl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
62 |
50 54 61
|
3bitr4d |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) ) |
63 |
62
|
eqrdv |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } = ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
64 |
63
|
f1oeq3d |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) ) |
65 |
29 64
|
mpbird |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } ) |
66 |
|
ssralv |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
67 |
27 66
|
ax-mp |
|- ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
68 |
|
elex |
|- ( G e. UHGraph -> G e. _V ) |
69 |
68
|
anim1i |
|- ( ( G e. UHGraph /\ H e. _V ) -> ( G e. _V /\ H e. _V ) ) |
70 |
69
|
3anim3i |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) ) |
71 |
70
|
anim1i |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) ) |
72 |
|
simpr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
73 |
|
fvres |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) = ( g ` i ) ) |
74 |
73
|
ad2antlr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) = ( g ` i ) ) |
75 |
74
|
fveq2d |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) |
76 |
|
fveq2 |
|- ( x = i -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` i ) ) |
77 |
76
|
sseq1d |
|- ( x = i -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
78 |
77
|
elrab |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
79 |
78
|
simprbi |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( ( iEdg ` G ) ` i ) C_ N ) |
80 |
79
|
ad2antlr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
81 |
|
resima2 |
|- ( ( ( iEdg ` G ) ` i ) C_ N -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
82 |
80 81
|
syl |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
83 |
72 75 82
|
3eqtr4rd |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
84 |
83
|
ex |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
85 |
71 84
|
sylanl1 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
86 |
85
|
ralimdva |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
87 |
67 86
|
syl5 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
88 |
87
|
expimpd |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
89 |
88
|
3exp1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) ) ) |
90 |
89
|
com25 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) ) ) |
91 |
90
|
3imp1 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
92 |
91
|
imp |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
93 |
65 92
|
jca |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
94 |
|
f1oeq1 |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } ) ) |
95 |
|
fveq1 |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( h ` i ) = ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) |
96 |
95
|
fveq2d |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
97 |
96
|
eqeq2d |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
98 |
97
|
ralbidv |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
99 |
94 98
|
anbi12d |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) |
100 |
22 93 99
|
spcedv |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
101 |
19 100
|
jca |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
102 |
18 101
|
mpdan |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
103 |
|
f1oeq1 |
|- ( f = ( F |` N ) -> ( f : N -1-1-onto-> ( F " N ) <-> ( F |` N ) : N -1-1-onto-> ( F " N ) ) ) |
104 |
|
imaeq1 |
|- ( f = ( F |` N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) ) |
105 |
104
|
eqeq1d |
|- ( f = ( F |` N ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
106 |
105
|
ralbidv |
|- ( f = ( F |` N ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
107 |
106
|
anbi2d |
|- ( f = ( F |` N ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
108 |
107
|
exbidv |
|- ( f = ( F |` N ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
109 |
103 108
|
anbi12d |
|- ( f = ( F |` N ) -> ( ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
110 |
14 102 109
|
spcedv |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
111 |
|
simpl3 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( G e. UHGraph /\ H e. _V ) ) |
112 |
|
simpr |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> N C_ V ) |
113 |
|
f1of |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V --> ( Vtx ` H ) ) |
114 |
113
|
fimassd |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( F " N ) C_ ( Vtx ` H ) ) |
115 |
114
|
a1d |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( N C_ V -> ( F " N ) C_ ( Vtx ` H ) ) ) |
116 |
115
|
3ad2ant1 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( N C_ V -> ( F " N ) C_ ( Vtx ` H ) ) ) |
117 |
116
|
imp |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F " N ) C_ ( Vtx ` H ) ) |
118 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } |
119 |
|
eqid |
|- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } |
120 |
1 5 6 7 118 119
|
isubgrgrim |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( N C_ V /\ ( F " N ) C_ ( Vtx ` H ) ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) <-> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
121 |
111 112 117 120
|
syl12anc |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) <-> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
122 |
110 121
|
mpbird |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |
123 |
122
|
3exp1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
124 |
123
|
exlimdv |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
125 |
124
|
imp |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) |
126 |
8 125
|
syl |
|- ( F e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) |
127 |
126
|
expd |
|- ( F e. ( G GraphIso H ) -> ( G e. UHGraph -> ( H e. _V -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
128 |
127
|
com12 |
|- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> ( H e. _V -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
129 |
128
|
com34 |
|- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> ( N C_ V -> ( H e. _V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
130 |
129
|
3imp |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( H e. _V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) |
131 |
130
|
adantld |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( ( G e. _V /\ H e. _V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) |
132 |
4 131
|
mpd |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |