| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrimisgrgric.v |
|- V = ( Vtx ` G ) |
| 2 |
|
grimdmrel |
|- Rel dom GraphIso |
| 3 |
2
|
ovrcl |
|- ( F e. ( G GraphIso H ) -> ( G e. _V /\ H e. _V ) ) |
| 4 |
3
|
3ad2ant2 |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G e. _V /\ H e. _V ) ) |
| 5 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 6 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 7 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 8 |
1 5 6 7
|
grimprop |
|- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 9 |
|
f1ofun |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> Fun F ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> Fun F ) |
| 11 |
1
|
fvexi |
|- V e. _V |
| 12 |
11
|
ssex |
|- ( N C_ V -> N e. _V ) |
| 13 |
|
resfunexg |
|- ( ( Fun F /\ N e. _V ) -> ( F |` N ) e. _V ) |
| 14 |
10 12 13
|
syl2an |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F |` N ) e. _V ) |
| 15 |
|
f1of1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 17 |
|
f1ores |
|- ( ( F : V -1-1-> ( Vtx ` H ) /\ N C_ V ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
| 18 |
16 17
|
sylan |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
| 19 |
|
simpr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
| 20 |
|
vex |
|- g e. _V |
| 21 |
20
|
resex |
|- ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) e. _V |
| 22 |
21
|
a1i |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) e. _V ) |
| 23 |
|
f1of1 |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 24 |
23
|
adantr |
|- ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 25 |
24
|
3ad2ant2 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 27 |
|
ssrab2 |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) |
| 28 |
|
f1ores |
|- ( ( g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 29 |
26 27 28
|
sylancl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 30 |
1 6
|
uhgrf |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 31 |
|
id |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 32 |
|
difssd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( ~P V \ { (/) } ) C_ ~P V ) |
| 33 |
31 32
|
fssd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
| 34 |
30 33
|
syl |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
| 35 |
34
|
adantr |
|- ( ( G e. UHGraph /\ H e. _V ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
| 36 |
35
|
anim2i |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
| 37 |
36
|
3adant2 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
| 39 |
|
simp2l |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
| 40 |
39
|
anim1i |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ N C_ V ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ N C_ V ) ) |
| 42 |
41
|
ancomd |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( N C_ V /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
| 43 |
|
simpl2r |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 44 |
43
|
adantr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 45 |
|
uhgrimisgrgriclem |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) /\ ( N C_ V /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) ) |
| 46 |
38 42 44 45
|
syl3anc |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) ) |
| 47 |
|
fveq2 |
|- ( x = k -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` k ) ) |
| 48 |
47
|
sseq1d |
|- ( x = k -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` k ) C_ N ) ) |
| 49 |
48
|
rexrab |
|- ( E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) |
| 50 |
46 49
|
bitr4di |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
| 51 |
|
fveq2 |
|- ( x = j -> ( ( iEdg ` H ) ` x ) = ( ( iEdg ` H ) ` j ) ) |
| 52 |
51
|
sseq1d |
|- ( x = j -> ( ( ( iEdg ` H ) ` x ) C_ ( F " N ) <-> ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) |
| 53 |
52
|
elrab |
|- ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) |
| 54 |
53
|
a1i |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) ) |
| 55 |
|
f1ofn |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g Fn dom ( iEdg ` G ) ) |
| 56 |
55 27
|
jctir |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 57 |
56
|
adantr |
|- ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 58 |
57
|
3ad2ant2 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 60 |
|
fvelimab |
|- ( ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) -> ( j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
| 61 |
59 60
|
syl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
| 62 |
50 54 61
|
3bitr4d |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) ) |
| 63 |
62
|
eqrdv |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } = ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 64 |
63
|
f1oeq3d |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) ) |
| 65 |
29 64
|
mpbird |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } ) |
| 66 |
|
ssralv |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
| 67 |
27 66
|
ax-mp |
|- ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 68 |
|
elex |
|- ( G e. UHGraph -> G e. _V ) |
| 69 |
68
|
anim1i |
|- ( ( G e. UHGraph /\ H e. _V ) -> ( G e. _V /\ H e. _V ) ) |
| 70 |
69
|
3anim3i |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) ) |
| 71 |
70
|
anim1i |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) ) |
| 72 |
|
simpr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 73 |
|
fvres |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) = ( g ` i ) ) |
| 74 |
73
|
ad2antlr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) = ( g ` i ) ) |
| 75 |
74
|
fveq2d |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) |
| 76 |
|
fveq2 |
|- ( x = i -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` i ) ) |
| 77 |
76
|
sseq1d |
|- ( x = i -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 78 |
77
|
elrab |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 79 |
78
|
simprbi |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( ( iEdg ` G ) ` i ) C_ N ) |
| 80 |
79
|
ad2antlr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
| 81 |
|
resima2 |
|- ( ( ( iEdg ` G ) ` i ) C_ N -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 82 |
80 81
|
syl |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 83 |
72 75 82
|
3eqtr4rd |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
| 84 |
83
|
ex |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 85 |
71 84
|
sylanl1 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 86 |
85
|
ralimdva |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 87 |
67 86
|
syl5 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 88 |
87
|
expimpd |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 89 |
88
|
3exp1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) ) ) |
| 90 |
89
|
com25 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) ) ) |
| 91 |
90
|
3imp1 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 92 |
91
|
imp |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
| 93 |
65 92
|
jca |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 94 |
|
f1oeq1 |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } ) ) |
| 95 |
|
fveq1 |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( h ` i ) = ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) |
| 96 |
95
|
fveq2d |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
| 97 |
96
|
eqeq2d |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 98 |
97
|
ralbidv |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 99 |
94 98
|
anbi12d |
|- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) |
| 100 |
22 93 99
|
spcedv |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 101 |
19 100
|
jca |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 102 |
18 101
|
mpdan |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 103 |
|
f1oeq1 |
|- ( f = ( F |` N ) -> ( f : N -1-1-onto-> ( F " N ) <-> ( F |` N ) : N -1-1-onto-> ( F " N ) ) ) |
| 104 |
|
imaeq1 |
|- ( f = ( F |` N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) ) |
| 105 |
104
|
eqeq1d |
|- ( f = ( F |` N ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 106 |
105
|
ralbidv |
|- ( f = ( F |` N ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 107 |
106
|
anbi2d |
|- ( f = ( F |` N ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 108 |
107
|
exbidv |
|- ( f = ( F |` N ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 109 |
103 108
|
anbi12d |
|- ( f = ( F |` N ) -> ( ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
| 110 |
14 102 109
|
spcedv |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 111 |
|
simpl3 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( G e. UHGraph /\ H e. _V ) ) |
| 112 |
|
simpr |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> N C_ V ) |
| 113 |
|
f1of |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V --> ( Vtx ` H ) ) |
| 114 |
113
|
fimassd |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( F " N ) C_ ( Vtx ` H ) ) |
| 115 |
114
|
a1d |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( N C_ V -> ( F " N ) C_ ( Vtx ` H ) ) ) |
| 116 |
115
|
3ad2ant1 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( N C_ V -> ( F " N ) C_ ( Vtx ` H ) ) ) |
| 117 |
116
|
imp |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F " N ) C_ ( Vtx ` H ) ) |
| 118 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } |
| 119 |
|
eqid |
|- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } |
| 120 |
1 5 6 7 118 119
|
isubgrgrim |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( N C_ V /\ ( F " N ) C_ ( Vtx ` H ) ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) <-> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
| 121 |
111 112 117 120
|
syl12anc |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) <-> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
| 122 |
110 121
|
mpbird |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |
| 123 |
122
|
3exp1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 124 |
123
|
exlimdv |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 125 |
124
|
imp |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) |
| 126 |
8 125
|
syl |
|- ( F e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) |
| 127 |
126
|
expd |
|- ( F e. ( G GraphIso H ) -> ( G e. UHGraph -> ( H e. _V -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 128 |
127
|
com12 |
|- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> ( H e. _V -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 129 |
128
|
com34 |
|- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> ( N C_ V -> ( H e. _V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 130 |
129
|
3imp |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( H e. _V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) |
| 131 |
130
|
adantld |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( ( G e. _V /\ H e. _V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) |
| 132 |
4 131
|
mpd |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |