| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgrvtx.v |
|- V = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 3 |
1 2
|
isisubgr |
|- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) |
| 4 |
3
|
fveq2d |
|- ( ( G e. W /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = ( Vtx ` <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) ) |
| 5 |
1
|
fvexi |
|- V e. _V |
| 6 |
5
|
ssex |
|- ( S C_ V -> S e. _V ) |
| 7 |
|
fvexd |
|- ( ( G e. W /\ S C_ V ) -> ( iEdg ` G ) e. _V ) |
| 8 |
7
|
resexd |
|- ( ( G e. W /\ S C_ V ) -> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) e. _V ) |
| 9 |
|
opvtxfv |
|- ( ( S e. _V /\ ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) e. _V ) -> ( Vtx ` <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) = S ) |
| 10 |
6 8 9
|
syl2an2 |
|- ( ( G e. W /\ S C_ V ) -> ( Vtx ` <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) = S ) |
| 11 |
4 10
|
eqtrd |
|- ( ( G e. W /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |