| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgrvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 3 |
1 2
|
isisubgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 4 |
3
|
fveq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( Vtx ‘ 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) ) |
| 5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 6 |
5
|
ssex |
⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ∈ V ) |
| 7 |
|
fvexd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐺 ) ∈ V ) |
| 8 |
7
|
resexd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) |
| 9 |
|
opvtxfv |
⊢ ( ( 𝑆 ∈ V ∧ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) → ( Vtx ‘ 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = 𝑆 ) |
| 10 |
6 8 9
|
syl2an2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = 𝑆 ) |
| 11 |
4 10
|
eqtrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 ) |