Step |
Hyp |
Ref |
Expression |
1 |
|
isubgrvtx.v |
|- V = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
uhgrf |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
4 |
3
|
adantr |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
5 |
|
dmresss |
|- dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ dom ( iEdg ` G ) |
6 |
5
|
a1i |
|- ( ( G e. UHGraph /\ S C_ V ) -> dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ dom ( iEdg ` G ) ) |
7 |
|
imadmres |
|- ( ( iEdg ` G ) " dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) = ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) |
8 |
|
ffvelcdm |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) /\ y e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` y ) e. ( ~P V \ { (/) } ) ) |
9 |
|
eldifsni |
|- ( ( ( iEdg ` G ) ` y ) e. ( ~P V \ { (/) } ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) |
10 |
8 9
|
syl |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) /\ y e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) |
11 |
10
|
ex |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( y e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
12 |
3 11
|
syl |
|- ( G e. UHGraph -> ( y e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
13 |
12
|
adantr |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( y e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
14 |
13
|
imp |
|- ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) |
15 |
|
fvexd |
|- ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. _V ) |
16 |
|
id |
|- ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) C_ S ) |
17 |
15 16
|
elpwd |
|- ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ~P S ) |
18 |
14 17
|
anim12ci |
|- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` G ) ` y ) C_ S ) -> ( ( ( iEdg ` G ) ` y ) e. ~P S /\ ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
19 |
|
eldifsn |
|- ( ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) <-> ( ( ( iEdg ` G ) ` y ) e. ~P S /\ ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
20 |
18 19
|
sylibr |
|- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` G ) ` y ) C_ S ) -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) |
21 |
20
|
ex |
|- ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
22 |
21
|
ralrimiva |
|- ( ( G e. UHGraph /\ S C_ V ) -> A. y e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
23 |
|
fveq2 |
|- ( x = y -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` y ) ) |
24 |
23
|
sseq1d |
|- ( x = y -> ( ( ( iEdg ` G ) ` x ) C_ S <-> ( ( iEdg ` G ) ` y ) C_ S ) ) |
25 |
24
|
ralrab |
|- ( A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) <-> A. y e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
26 |
22 25
|
sylibr |
|- ( ( G e. UHGraph /\ S C_ V ) -> A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) |
27 |
|
ffun |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> Fun ( iEdg ` G ) ) |
28 |
|
ssrab2 |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) |
29 |
27 28
|
jctir |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) ) |
30 |
3 29
|
syl |
|- ( G e. UHGraph -> ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) ) |
31 |
30
|
adantr |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) ) |
32 |
|
funimass4 |
|- ( ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( ~P S \ { (/) } ) <-> A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
33 |
31 32
|
syl |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( ~P S \ { (/) } ) <-> A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
34 |
26 33
|
mpbird |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( ~P S \ { (/) } ) ) |
35 |
7 34
|
eqsstrid |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) " dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) C_ ( ~P S \ { (/) } ) ) |
36 |
4 6 35
|
fssrescdmd |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) |
37 |
|
resdmres |
|- ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) |
38 |
37
|
eqcomi |
|- ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) = ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
39 |
38
|
feq1i |
|- ( ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) <-> ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) |
40 |
36 39
|
sylibr |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) |
41 |
1 2
|
isubgriedg |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
42 |
41
|
dmeqd |
|- ( ( G e. UHGraph /\ S C_ V ) -> dom ( iEdg ` ( G ISubGr S ) ) = dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
43 |
1
|
isubgrvtx |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |
44 |
43
|
pweqd |
|- ( ( G e. UHGraph /\ S C_ V ) -> ~P ( Vtx ` ( G ISubGr S ) ) = ~P S ) |
45 |
44
|
difeq1d |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) = ( ~P S \ { (/) } ) ) |
46 |
41 42 45
|
feq123d |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) <-> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) ) |
47 |
40 46
|
mpbird |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) ) |
48 |
|
ovexd |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. _V ) |
49 |
|
eqid |
|- ( Vtx ` ( G ISubGr S ) ) = ( Vtx ` ( G ISubGr S ) ) |
50 |
|
eqid |
|- ( iEdg ` ( G ISubGr S ) ) = ( iEdg ` ( G ISubGr S ) ) |
51 |
49 50
|
isuhgr |
|- ( ( G ISubGr S ) e. _V -> ( ( G ISubGr S ) e. UHGraph <-> ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) ) ) |
52 |
48 51
|
syl |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( G ISubGr S ) e. UHGraph <-> ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) ) ) |
53 |
47 52
|
mpbird |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. UHGraph ) |