| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssrescdmd.f |
|- ( ph -> F : A --> B ) |
| 2 |
|
fssrescdmd.c |
|- ( ph -> C C_ A ) |
| 3 |
|
fssrescdmd.d |
|- ( ph -> ( F " C ) C_ D ) |
| 4 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
| 5 |
4 2
|
fnssresd |
|- ( ph -> ( F |` C ) Fn C ) |
| 6 |
|
resima |
|- ( ( F |` C ) " C ) = ( F " C ) |
| 7 |
6 3
|
eqsstrid |
|- ( ph -> ( ( F |` C ) " C ) C_ D ) |
| 8 |
1
|
ffund |
|- ( ph -> Fun F ) |
| 9 |
8
|
funresd |
|- ( ph -> Fun ( F |` C ) ) |
| 10 |
1
|
fdmd |
|- ( ph -> dom F = A ) |
| 11 |
2 10
|
sseqtrrd |
|- ( ph -> C C_ dom F ) |
| 12 |
|
ssdmres |
|- ( C C_ dom F <-> dom ( F |` C ) = C ) |
| 13 |
12
|
a1i |
|- ( ph -> ( C C_ dom F <-> dom ( F |` C ) = C ) ) |
| 14 |
|
eqcom |
|- ( dom ( F |` C ) = C <-> C = dom ( F |` C ) ) |
| 15 |
13 14
|
bitrdi |
|- ( ph -> ( C C_ dom F <-> C = dom ( F |` C ) ) ) |
| 16 |
11 15
|
mpbid |
|- ( ph -> C = dom ( F |` C ) ) |
| 17 |
16
|
eqimssd |
|- ( ph -> C C_ dom ( F |` C ) ) |
| 18 |
|
funimass4 |
|- ( ( Fun ( F |` C ) /\ C C_ dom ( F |` C ) ) -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) ) |
| 19 |
9 17 18
|
syl2anc |
|- ( ph -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) ) |
| 20 |
7 19
|
mpbid |
|- ( ph -> A. x e. C ( ( F |` C ) ` x ) e. D ) |
| 21 |
|
ffnfv |
|- ( ( F |` C ) : C --> D <-> ( ( F |` C ) Fn C /\ A. x e. C ( ( F |` C ) ` x ) e. D ) ) |
| 22 |
5 20 21
|
sylanbrc |
|- ( ph -> ( F |` C ) : C --> D ) |