| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgrvtx.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
isubgrvtx |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |
| 3 |
|
simpr |
|- ( ( G e. UHGraph /\ S C_ V ) -> S C_ V ) |
| 4 |
2 3
|
eqsstrd |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) C_ V ) |
| 5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 6 |
1 5
|
isubgriedg |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 7 |
|
resss |
|- ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( iEdg ` G ) |
| 8 |
6 7
|
eqsstrdi |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) C_ ( iEdg ` G ) ) |
| 9 |
|
simpl |
|- ( ( G e. UHGraph /\ S C_ V ) -> G e. UHGraph ) |
| 10 |
5
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 11 |
10
|
adantr |
|- ( ( G e. UHGraph /\ S C_ V ) -> Fun ( iEdg ` G ) ) |
| 12 |
1
|
isubgruhgr |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. UHGraph ) |
| 13 |
|
eqid |
|- ( Vtx ` ( G ISubGr S ) ) = ( Vtx ` ( G ISubGr S ) ) |
| 14 |
|
eqid |
|- ( iEdg ` ( G ISubGr S ) ) = ( iEdg ` ( G ISubGr S ) ) |
| 15 |
13 1 14 5
|
uhgrissubgr |
|- ( ( G e. UHGraph /\ Fun ( iEdg ` G ) /\ ( G ISubGr S ) e. UHGraph ) -> ( ( G ISubGr S ) SubGraph G <-> ( ( Vtx ` ( G ISubGr S ) ) C_ V /\ ( iEdg ` ( G ISubGr S ) ) C_ ( iEdg ` G ) ) ) ) |
| 16 |
9 11 12 15
|
syl3anc |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( ( G ISubGr S ) SubGraph G <-> ( ( Vtx ` ( G ISubGr S ) ) C_ V /\ ( iEdg ` ( G ISubGr S ) ) C_ ( iEdg ` G ) ) ) ) |
| 17 |
4 8 16
|
mpbir2and |
|- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) SubGraph G ) |