| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgrvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
isubgrvtx |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 ) |
| 3 |
|
simpr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) |
| 4 |
2 3
|
eqsstrd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ) |
| 5 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 6 |
1 5
|
isubgriedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 7 |
|
resss |
⊢ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( iEdg ‘ 𝐺 ) |
| 8 |
6 7
|
eqsstrdi |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → 𝐺 ∈ UHGraph ) |
| 10 |
5
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 12 |
1
|
isubgruhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) |
| 13 |
|
eqid |
⊢ ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) |
| 14 |
|
eqid |
⊢ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) |
| 15 |
13 1 14 5
|
uhgrissubgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ Fun ( iEdg ‘ 𝐺 ) ∧ ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) → ( ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ↔ ( ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ∧ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
| 16 |
9 11 12 15
|
syl3anc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ↔ ( ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ∧ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
| 17 |
4 8 16
|
mpbir2and |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ) |