Metamath Proof Explorer


Theorem isubgrsubgr

Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025)

Ref Expression
Hypothesis isubgrvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion isubgrsubgr ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 )

Proof

Step Hyp Ref Expression
1 isubgrvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 isubgrvtx ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 )
3 simpr ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → 𝑆𝑉 )
4 2 3 eqsstrd ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 )
5 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
6 1 5 isubgriedg ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) )
7 resss ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( iEdg ‘ 𝐺 )
8 6 7 eqsstrdi ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) )
9 simpl ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → 𝐺 ∈ UHGraph )
10 5 uhgrfun ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) )
11 10 adantr ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → Fun ( iEdg ‘ 𝐺 ) )
12 1 isubgruhgr ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph )
13 eqid ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) )
14 eqid ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) )
15 13 1 14 5 uhgrissubgr ( ( 𝐺 ∈ UHGraph ∧ Fun ( iEdg ‘ 𝐺 ) ∧ ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) → ( ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ↔ ( ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ∧ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) ) )
16 9 11 12 15 syl3anc ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ↔ ( ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ∧ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) ) )
17 4 8 16 mpbir2and ( ( 𝐺 ∈ UHGraph ∧ 𝑆𝑉 ) → ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 )