Metamath Proof Explorer


Theorem uhgrissubgr

Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrissubgr.v 𝑉 = ( Vtx ‘ 𝑆 )
uhgrissubgr.a 𝐴 = ( Vtx ‘ 𝐺 )
uhgrissubgr.i 𝐼 = ( iEdg ‘ 𝑆 )
uhgrissubgr.b 𝐵 = ( iEdg ‘ 𝐺 )
Assertion uhgrissubgr ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉𝐴𝐼𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 uhgrissubgr.v 𝑉 = ( Vtx ‘ 𝑆 )
2 uhgrissubgr.a 𝐴 = ( Vtx ‘ 𝐺 )
3 uhgrissubgr.i 𝐼 = ( iEdg ‘ 𝑆 )
4 uhgrissubgr.b 𝐵 = ( iEdg ‘ 𝐺 )
5 eqid ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 )
6 1 2 3 4 5 subgrprop2 ( 𝑆 SubGraph 𝐺 → ( 𝑉𝐴𝐼𝐵 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) )
7 3simpa ( ( 𝑉𝐴𝐼𝐵 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) → ( 𝑉𝐴𝐼𝐵 ) )
8 6 7 syl ( 𝑆 SubGraph 𝐺 → ( 𝑉𝐴𝐼𝐵 ) )
9 simprl ( ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) ∧ ( 𝑉𝐴𝐼𝐵 ) ) → 𝑉𝐴 )
10 simp2 ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) → Fun 𝐵 )
11 simpr ( ( 𝑉𝐴𝐼𝐵 ) → 𝐼𝐵 )
12 funssres ( ( Fun 𝐵𝐼𝐵 ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 )
13 10 11 12 syl2an ( ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) ∧ ( 𝑉𝐴𝐼𝐵 ) ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 )
14 13 eqcomd ( ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) ∧ ( 𝑉𝐴𝐼𝐵 ) ) → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) )
15 edguhgr ( ( 𝑆 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝑆 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) )
16 15 ex ( 𝑆 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) )
17 1 pweqi 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝑆 )
18 17 eleq2i ( 𝑒 ∈ 𝒫 𝑉𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) )
19 16 18 syl6ibr ( 𝑆 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 𝑉 ) )
20 19 ssrdv ( 𝑆 ∈ UHGraph → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 )
21 20 3ad2ant3 ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 )
22 21 adantr ( ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) ∧ ( 𝑉𝐴𝐼𝐵 ) ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 )
23 1 2 3 4 5 issubgr ( ( 𝐺𝑊𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉𝐴𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) )
24 23 3adant2 ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉𝐴𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) )
25 24 adantr ( ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) ∧ ( 𝑉𝐴𝐼𝐵 ) ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉𝐴𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) )
26 9 14 22 25 mpbir3and ( ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) ∧ ( 𝑉𝐴𝐼𝐵 ) ) → 𝑆 SubGraph 𝐺 )
27 26 ex ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) → ( ( 𝑉𝐴𝐼𝐵 ) → 𝑆 SubGraph 𝐺 ) )
28 8 27 impbid2 ( ( 𝐺𝑊 ∧ Fun 𝐵𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉𝐴𝐼𝐵 ) ) )