| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrissubgr.v |
|
| 2 |
|
uhgrissubgr.a |
|
| 3 |
|
uhgrissubgr.i |
|
| 4 |
|
uhgrissubgr.b |
|
| 5 |
|
eqid |
|
| 6 |
1 2 3 4 5
|
subgrprop2 |
|
| 7 |
|
3simpa |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simprl |
|
| 10 |
|
simp2 |
|
| 11 |
|
simpr |
|
| 12 |
|
funssres |
|
| 13 |
10 11 12
|
syl2an |
|
| 14 |
13
|
eqcomd |
|
| 15 |
|
edguhgr |
|
| 16 |
15
|
ex |
|
| 17 |
1
|
pweqi |
|
| 18 |
17
|
eleq2i |
|
| 19 |
16 18
|
imbitrrdi |
|
| 20 |
19
|
ssrdv |
|
| 21 |
20
|
3ad2ant3 |
|
| 22 |
21
|
adantr |
|
| 23 |
1 2 3 4 5
|
issubgr |
|
| 24 |
23
|
3adant2 |
|
| 25 |
24
|
adantr |
|
| 26 |
9 14 22 25
|
mpbir3and |
|
| 27 |
26
|
ex |
|
| 28 |
8 27
|
impbid2 |
|