Metamath Proof Explorer


Theorem issubgr

Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020)

Ref Expression
Hypotheses issubgr.v V=VtxS
issubgr.a A=VtxG
issubgr.i I=iEdgS
issubgr.b B=iEdgG
issubgr.e E=EdgS
Assertion issubgr GWSUSSubGraphGVAI=BdomIE𝒫V

Proof

Step Hyp Ref Expression
1 issubgr.v V=VtxS
2 issubgr.a A=VtxG
3 issubgr.i I=iEdgS
4 issubgr.b B=iEdgG
5 issubgr.e E=EdgS
6 fveq2 s=SVtxs=VtxS
7 6 adantr s=Sg=GVtxs=VtxS
8 fveq2 g=GVtxg=VtxG
9 8 adantl s=Sg=GVtxg=VtxG
10 7 9 sseq12d s=Sg=GVtxsVtxgVtxSVtxG
11 fveq2 s=SiEdgs=iEdgS
12 11 adantr s=Sg=GiEdgs=iEdgS
13 fveq2 g=GiEdgg=iEdgG
14 13 adantl s=Sg=GiEdgg=iEdgG
15 11 dmeqd s=SdomiEdgs=domiEdgS
16 15 adantr s=Sg=GdomiEdgs=domiEdgS
17 14 16 reseq12d s=Sg=GiEdggdomiEdgs=iEdgGdomiEdgS
18 12 17 eqeq12d s=Sg=GiEdgs=iEdggdomiEdgsiEdgS=iEdgGdomiEdgS
19 fveq2 s=SEdgs=EdgS
20 6 pweqd s=S𝒫Vtxs=𝒫VtxS
21 19 20 sseq12d s=SEdgs𝒫VtxsEdgS𝒫VtxS
22 21 adantr s=Sg=GEdgs𝒫VtxsEdgS𝒫VtxS
23 10 18 22 3anbi123d s=Sg=GVtxsVtxgiEdgs=iEdggdomiEdgsEdgs𝒫VtxsVtxSVtxGiEdgS=iEdgGdomiEdgSEdgS𝒫VtxS
24 df-subgr SubGraph=sg|VtxsVtxgiEdgs=iEdggdomiEdgsEdgs𝒫Vtxs
25 23 24 brabga SUGWSSubGraphGVtxSVtxGiEdgS=iEdgGdomiEdgSEdgS𝒫VtxS
26 25 ancoms GWSUSSubGraphGVtxSVtxGiEdgS=iEdgGdomiEdgSEdgS𝒫VtxS
27 1 2 sseq12i VAVtxSVtxG
28 3 dmeqi domI=domiEdgS
29 4 28 reseq12i BdomI=iEdgGdomiEdgS
30 3 29 eqeq12i I=BdomIiEdgS=iEdgGdomiEdgS
31 1 pweqi 𝒫V=𝒫VtxS
32 5 31 sseq12i E𝒫VEdgS𝒫VtxS
33 27 30 32 3anbi123i VAI=BdomIE𝒫VVtxSVtxGiEdgS=iEdgGdomiEdgSEdgS𝒫VtxS
34 26 33 bitr4di GWSUSSubGraphGVAI=BdomIE𝒫V