Metamath Proof Explorer


Theorem issubgr2

Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020)

Ref Expression
Hypotheses issubgr.v V=VtxS
issubgr.a A=VtxG
issubgr.i I=iEdgS
issubgr.b B=iEdgG
issubgr.e E=EdgS
Assertion issubgr2 GWFunBSUSSubGraphGVAIBE𝒫V

Proof

Step Hyp Ref Expression
1 issubgr.v V=VtxS
2 issubgr.a A=VtxG
3 issubgr.i I=iEdgS
4 issubgr.b B=iEdgG
5 issubgr.e E=EdgS
6 1 2 3 4 5 issubgr GWSUSSubGraphGVAI=BdomIE𝒫V
7 6 3adant2 GWFunBSUSSubGraphGVAI=BdomIE𝒫V
8 resss BdomIB
9 sseq1 I=BdomIIBBdomIB
10 8 9 mpbiri I=BdomIIB
11 funssres FunBIBBdomI=I
12 11 eqcomd FunBIBI=BdomI
13 12 ex FunBIBI=BdomI
14 13 3ad2ant2 GWFunBSUIBI=BdomI
15 10 14 impbid2 GWFunBSUI=BdomIIB
16 15 3anbi2d GWFunBSUVAI=BdomIE𝒫VVAIBE𝒫V
17 7 16 bitrd GWFunBSUSSubGraphGVAIBE𝒫V