| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝑆 ) | 
						
							| 2 |  | issubgr.a | ⊢ 𝐴  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | issubgr.i | ⊢ 𝐼  =  ( iEdg ‘ 𝑆 ) | 
						
							| 4 |  | issubgr.b | ⊢ 𝐵  =  ( iEdg ‘ 𝐺 ) | 
						
							| 5 |  | issubgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝑆 ) | 
						
							| 6 | 1 2 3 4 5 | issubgr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  →  ( 𝑆  SubGraph  𝐺  ↔  ( 𝑉  ⊆  𝐴  ∧  𝐼  =  ( 𝐵  ↾  dom  𝐼 )  ∧  𝐸  ⊆  𝒫  𝑉 ) ) ) | 
						
							| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  Fun  𝐵  ∧  𝑆  ∈  𝑈 )  →  ( 𝑆  SubGraph  𝐺  ↔  ( 𝑉  ⊆  𝐴  ∧  𝐼  =  ( 𝐵  ↾  dom  𝐼 )  ∧  𝐸  ⊆  𝒫  𝑉 ) ) ) | 
						
							| 8 |  | resss | ⊢ ( 𝐵  ↾  dom  𝐼 )  ⊆  𝐵 | 
						
							| 9 |  | sseq1 | ⊢ ( 𝐼  =  ( 𝐵  ↾  dom  𝐼 )  →  ( 𝐼  ⊆  𝐵  ↔  ( 𝐵  ↾  dom  𝐼 )  ⊆  𝐵 ) ) | 
						
							| 10 | 8 9 | mpbiri | ⊢ ( 𝐼  =  ( 𝐵  ↾  dom  𝐼 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 11 |  | funssres | ⊢ ( ( Fun  𝐵  ∧  𝐼  ⊆  𝐵 )  →  ( 𝐵  ↾  dom  𝐼 )  =  𝐼 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( Fun  𝐵  ∧  𝐼  ⊆  𝐵 )  →  𝐼  =  ( 𝐵  ↾  dom  𝐼 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( Fun  𝐵  →  ( 𝐼  ⊆  𝐵  →  𝐼  =  ( 𝐵  ↾  dom  𝐼 ) ) ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  Fun  𝐵  ∧  𝑆  ∈  𝑈 )  →  ( 𝐼  ⊆  𝐵  →  𝐼  =  ( 𝐵  ↾  dom  𝐼 ) ) ) | 
						
							| 15 | 10 14 | impbid2 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  Fun  𝐵  ∧  𝑆  ∈  𝑈 )  →  ( 𝐼  =  ( 𝐵  ↾  dom  𝐼 )  ↔  𝐼  ⊆  𝐵 ) ) | 
						
							| 16 | 15 | 3anbi2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  Fun  𝐵  ∧  𝑆  ∈  𝑈 )  →  ( ( 𝑉  ⊆  𝐴  ∧  𝐼  =  ( 𝐵  ↾  dom  𝐼 )  ∧  𝐸  ⊆  𝒫  𝑉 )  ↔  ( 𝑉  ⊆  𝐴  ∧  𝐼  ⊆  𝐵  ∧  𝐸  ⊆  𝒫  𝑉 ) ) ) | 
						
							| 17 | 7 16 | bitrd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  Fun  𝐵  ∧  𝑆  ∈  𝑈 )  →  ( 𝑆  SubGraph  𝐺  ↔  ( 𝑉  ⊆  𝐴  ∧  𝐼  ⊆  𝐵  ∧  𝐸  ⊆  𝒫  𝑉 ) ) ) |