Step |
Hyp |
Ref |
Expression |
1 |
|
subgrprop3.v |
⊢ 𝑉 = ( Vtx ‘ 𝑆 ) |
2 |
|
subgrprop3.a |
⊢ 𝐴 = ( Vtx ‘ 𝐺 ) |
3 |
|
subgrprop3.e |
⊢ 𝐸 = ( Edg ‘ 𝑆 ) |
4 |
|
subgrprop3.b |
⊢ 𝐵 = ( Edg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
7 |
1 2 5 6 3
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) |
8 |
|
3simpa |
⊢ ( ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) → ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
10 |
|
simprl |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → 𝑉 ⊆ 𝐴 ) |
11 |
|
rnss |
⊢ ( ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) → ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) |
12 |
11
|
ad2antll |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) |
13 |
|
subgrv |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) |
14 |
|
edgval |
⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) |
15 |
14
|
a1i |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) ) |
16 |
3 15
|
eqtrid |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → 𝐸 = ran ( iEdg ‘ 𝑆 ) ) |
17 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
18 |
17
|
a1i |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
19 |
4 18
|
eqtrid |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → 𝐵 = ran ( iEdg ‘ 𝐺 ) ) |
20 |
16 19
|
sseq12d |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐸 ⊆ 𝐵 ↔ ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) ) |
21 |
13 20
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐸 ⊆ 𝐵 ↔ ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → ( 𝐸 ⊆ 𝐵 ↔ ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) ) |
23 |
12 22
|
mpbird |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → 𝐸 ⊆ 𝐵 ) |
24 |
10 23
|
jca |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → ( 𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵 ) ) |
25 |
9 24
|
mpdan |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵 ) ) |