Step |
Hyp |
Ref |
Expression |
1 |
|
subgrprop3.v |
|- V = ( Vtx ` S ) |
2 |
|
subgrprop3.a |
|- A = ( Vtx ` G ) |
3 |
|
subgrprop3.e |
|- E = ( Edg ` S ) |
4 |
|
subgrprop3.b |
|- B = ( Edg ` G ) |
5 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
6 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
7 |
1 2 5 6 3
|
subgrprop2 |
|- ( S SubGraph G -> ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ E C_ ~P V ) ) |
8 |
|
3simpa |
|- ( ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ E C_ ~P V ) -> ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
9 |
7 8
|
syl |
|- ( S SubGraph G -> ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
10 |
|
simprl |
|- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> V C_ A ) |
11 |
|
rnss |
|- ( ( iEdg ` S ) C_ ( iEdg ` G ) -> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) |
12 |
11
|
ad2antll |
|- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) |
13 |
|
subgrv |
|- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
14 |
|
edgval |
|- ( Edg ` S ) = ran ( iEdg ` S ) |
15 |
14
|
a1i |
|- ( ( S e. _V /\ G e. _V ) -> ( Edg ` S ) = ran ( iEdg ` S ) ) |
16 |
3 15
|
eqtrid |
|- ( ( S e. _V /\ G e. _V ) -> E = ran ( iEdg ` S ) ) |
17 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
18 |
17
|
a1i |
|- ( ( S e. _V /\ G e. _V ) -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
19 |
4 18
|
eqtrid |
|- ( ( S e. _V /\ G e. _V ) -> B = ran ( iEdg ` G ) ) |
20 |
16 19
|
sseq12d |
|- ( ( S e. _V /\ G e. _V ) -> ( E C_ B <-> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) ) |
21 |
13 20
|
syl |
|- ( S SubGraph G -> ( E C_ B <-> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) ) |
22 |
21
|
adantr |
|- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> ( E C_ B <-> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) ) |
23 |
12 22
|
mpbird |
|- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> E C_ B ) |
24 |
10 23
|
jca |
|- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> ( V C_ A /\ E C_ B ) ) |
25 |
9 24
|
mpdan |
|- ( S SubGraph G -> ( V C_ A /\ E C_ B ) ) |