| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( Vtx ` S ) C_ ( Vtx ` G ) ) |
| 2 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
| 3 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
| 4 |
2 3
|
edg0iedg0 |
|- ( Fun ( iEdg ` S ) -> ( ( Edg ` S ) = (/) <-> ( iEdg ` S ) = (/) ) ) |
| 5 |
4
|
adantl |
|- ( ( ( G e. W /\ S e. U ) /\ Fun ( iEdg ` S ) ) -> ( ( Edg ` S ) = (/) <-> ( iEdg ` S ) = (/) ) ) |
| 6 |
|
res0 |
|- ( ( iEdg ` G ) |` (/) ) = (/) |
| 7 |
6
|
eqcomi |
|- (/) = ( ( iEdg ` G ) |` (/) ) |
| 8 |
|
id |
|- ( ( iEdg ` S ) = (/) -> ( iEdg ` S ) = (/) ) |
| 9 |
|
dmeq |
|- ( ( iEdg ` S ) = (/) -> dom ( iEdg ` S ) = dom (/) ) |
| 10 |
|
dm0 |
|- dom (/) = (/) |
| 11 |
9 10
|
eqtrdi |
|- ( ( iEdg ` S ) = (/) -> dom ( iEdg ` S ) = (/) ) |
| 12 |
11
|
reseq2d |
|- ( ( iEdg ` S ) = (/) -> ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) = ( ( iEdg ` G ) |` (/) ) ) |
| 13 |
7 8 12
|
3eqtr4a |
|- ( ( iEdg ` S ) = (/) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 14 |
5 13
|
biimtrdi |
|- ( ( ( G e. W /\ S e. U ) /\ Fun ( iEdg ` S ) ) -> ( ( Edg ` S ) = (/) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) ) |
| 15 |
14
|
impr |
|- ( ( ( G e. W /\ S e. U ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 16 |
15
|
3adant2 |
|- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 17 |
|
0ss |
|- (/) C_ ~P ( Vtx ` S ) |
| 18 |
|
sseq1 |
|- ( ( Edg ` S ) = (/) -> ( ( Edg ` S ) C_ ~P ( Vtx ` S ) <-> (/) C_ ~P ( Vtx ` S ) ) ) |
| 19 |
17 18
|
mpbiri |
|- ( ( Edg ` S ) = (/) -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 20 |
19
|
adantl |
|- ( ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 21 |
20
|
3ad2ant3 |
|- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 22 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 23 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 24 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 25 |
22 23 2 24 3
|
issubgr |
|- ( ( G e. W /\ S e. U ) -> ( S SubGraph G <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( S SubGraph G <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 27 |
1 16 21 26
|
mpbir3and |
|- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> S SubGraph G ) |