| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
clnbgrgrimlem.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 3 |
|
clnbgrgrimlem.e |
⊢ 𝐸 = ( Edg ‘ 𝐻 ) |
| 4 |
3
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ( Edg ‘ 𝐻 ) ) |
| 5 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 6 |
5
|
uhgredgiedgb |
⊢ ( 𝐻 ∈ UHGraph → ( 𝐾 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 7 |
4 6
|
bitrid |
⊢ ( 𝐻 ∈ UHGraph → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 11 |
|
sseq2 |
⊢ ( 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 13 |
|
simp1 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 14 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑌 ∈ 𝑊 ) |
| 15 |
13 14
|
anim12i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 16 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
| 18 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑋 ∈ 𝑉 ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑋 ∈ 𝑉 ) |
| 20 |
17 19
|
jca |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
| 22 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 23 |
22
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 27 |
|
simpl2l |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 28 |
|
f1ocnvdm |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 29 |
27 28
|
sylan |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 30 |
26 29
|
jca |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 31 |
22
|
iedgedg |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 34 |
|
sseq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) → ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 36 |
|
2fveq3 |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
| 38 |
37
|
imaeq2d |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 39 |
36 38
|
eqeq12d |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 40 |
39
|
rspcv |
⊢ ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 43 |
|
simp1 |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 44 |
42 43
|
anim12i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
| 46 |
|
f1ocnvfv2 |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
| 48 |
47
|
fveqeq2d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 49 |
|
sseq2 |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 51 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝐹 Fn 𝑉 ) |
| 53 |
|
simpr3l |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 54 |
|
simpl |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 55 |
14
|
3ad2ant3 |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑌 ∈ 𝑊 ) |
| 56 |
54 55
|
anim12i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 57 |
56 16
|
syl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
| 58 |
52 53 57
|
3jca |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) ) |
| 60 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) → ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } ) |
| 62 |
56
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 63 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 64 |
62 63
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 65 |
64
|
preq2d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } = { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ) |
| 66 |
61 65
|
eqtr2d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑋 ) , 𝑌 } = ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ) |
| 67 |
66
|
sseq1d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 68 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 71 |
53 57
|
prssd |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ) |
| 72 |
71
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ) |
| 73 |
|
simpr2l |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝐺 ∈ UHGraph ) |
| 74 |
1 22
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
| 75 |
73 74
|
sylan |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
| 76 |
|
f1imass |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 77 |
70 72 75 76
|
syl12anc |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 78 |
77
|
biimpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 79 |
67 78
|
sylbid |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 81 |
50 80
|
sylbid |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 82 |
81
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 83 |
48 82
|
sylbid |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 84 |
41 83
|
syld |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 85 |
84
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 86 |
85
|
com23 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 87 |
86
|
3exp2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
| 88 |
87
|
com25 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
| 89 |
88
|
expimpd |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
| 90 |
89
|
3imp1 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 91 |
90
|
imp |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 92 |
29 91
|
mpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 93 |
92
|
imp |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
| 94 |
33 35 93
|
rspcedvd |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) |
| 95 |
94
|
olcd |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) = 𝑋 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) ) |
| 96 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 97 |
1 96
|
clnbgrel |
⊢ ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( ( ◡ 𝐹 ‘ 𝑌 ) = 𝑋 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) ) ) |
| 98 |
21 95 97
|
sylanbrc |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 99 |
98
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 100 |
99
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 101 |
12 100
|
sylbid |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 102 |
101
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 103 |
102
|
rexlimdva |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 104 |
10 103
|
sylbid |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐾 ∈ 𝐸 → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 105 |
104
|
impd |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 106 |
105
|
3exp1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) ) |
| 107 |
106
|
exlimdv |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) ) |
| 108 |
107
|
imp |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) |
| 109 |
1 2 22 5
|
grimprop |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 110 |
108 109
|
syl11 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) |
| 111 |
110
|
3imp1 |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 112 |
|
fveqeq2 |
⊢ ( 𝑛 = ( ◡ 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) ) |
| 113 |
112
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) ∧ 𝑛 = ( ◡ 𝐹 ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) ) |
| 114 |
1 2
|
grimf1o |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 115 |
114 14
|
anim12i |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 116 |
115
|
3adant1 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 118 |
117 63
|
syl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 119 |
111 113 118
|
rspcedvd |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 120 |
119
|
ex |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) ) |