Step |
Hyp |
Ref |
Expression |
1 |
|
clnbgrgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
clnbgrgrimlem.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
clnbgrgrimlem.e |
⊢ 𝐸 = ( Edg ‘ 𝐻 ) |
4 |
3
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ( Edg ‘ 𝐻 ) ) |
5 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
6 |
5
|
uhgredgiedgb |
⊢ ( 𝐻 ∈ UHGraph → ( 𝐾 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
7 |
4 6
|
bitrid |
⊢ ( 𝐻 ∈ UHGraph → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
11 |
|
sseq2 |
⊢ ( 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
13 |
|
simp1 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
14 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑌 ∈ 𝑊 ) |
15 |
13 14
|
anim12i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
16 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
18 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑋 ∈ 𝑉 ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑋 ∈ 𝑉 ) |
20 |
17 19
|
jca |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
22 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
23 |
22
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → Fun ( iEdg ‘ 𝐺 ) ) |
25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
27 |
|
simpl2l |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
28 |
|
f1ocnvdm |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
29 |
27 28
|
sylan |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
30 |
26 29
|
jca |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
31 |
22
|
iedgedg |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
34 |
|
sseq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) → ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
36 |
|
2fveq3 |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
38 |
37
|
imaeq2d |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
39 |
36 38
|
eqeq12d |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
40 |
39
|
rspcv |
⊢ ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
42 |
|
simpr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
43 |
|
simp1 |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) |
44 |
42 43
|
anim12i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
46 |
|
f1ocnvfv2 |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
47 |
45 46
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
48 |
47
|
fveqeq2d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
49 |
|
sseq2 |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
50 |
49
|
adantl |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
51 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
52 |
51
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝐹 Fn 𝑉 ) |
53 |
|
simpr3l |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝑋 ∈ 𝑉 ) |
54 |
|
simpl |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
55 |
14
|
3ad2ant3 |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑌 ∈ 𝑊 ) |
56 |
54 55
|
anim12i |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
57 |
56 16
|
syl |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
58 |
52 53 57
|
3jca |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) ) |
60 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) → ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } ) |
61 |
59 60
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } ) |
62 |
56
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
63 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
64 |
62 63
|
syl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
65 |
64
|
preq2d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } = { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ) |
66 |
61 65
|
eqtr2d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑋 ) , 𝑌 } = ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ) |
67 |
66
|
sseq1d |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
68 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
69 |
68
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
71 |
53 57
|
prssd |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ) |
72 |
71
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ) |
73 |
|
simpr2l |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝐺 ∈ UHGraph ) |
74 |
1 22
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
75 |
73 74
|
sylan |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
76 |
|
f1imass |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
77 |
70 72 75 76
|
syl12anc |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
78 |
77
|
biimpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
79 |
67 78
|
sylbid |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
80 |
79
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
81 |
50 80
|
sylbid |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
82 |
81
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
83 |
48 82
|
sylbid |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
84 |
41 83
|
syld |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
85 |
84
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
86 |
85
|
com23 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
87 |
86
|
3exp2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
88 |
87
|
com25 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
89 |
88
|
expimpd |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
90 |
89
|
3imp1 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
91 |
90
|
imp |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
92 |
29 91
|
mpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
93 |
92
|
imp |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
94 |
33 35 93
|
rspcedvd |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) |
95 |
94
|
olcd |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) = 𝑋 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) ) |
96 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
97 |
1 96
|
clnbgrel |
⊢ ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( ( ◡ 𝐹 ‘ 𝑌 ) = 𝑋 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) ) ) |
98 |
21 95 97
|
sylanbrc |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
99 |
98
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
101 |
12 100
|
sylbid |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
102 |
101
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
103 |
102
|
rexlimdva |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
104 |
10 103
|
sylbid |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐾 ∈ 𝐸 → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
105 |
104
|
impd |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
106 |
105
|
3exp1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) ) |
107 |
106
|
exlimdv |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) ) |
108 |
107
|
imp |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) |
109 |
1 2 22 5
|
grimprop |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
110 |
108 109
|
syl11 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) |
111 |
110
|
3imp1 |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
112 |
|
fveqeq2 |
⊢ ( 𝑛 = ( ◡ 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) ) |
113 |
112
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) ∧ 𝑛 = ( ◡ 𝐹 ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) ) |
114 |
1 2
|
grimf1o |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
115 |
114 14
|
anim12i |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
116 |
115
|
3adant1 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
117 |
116
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
118 |
117 63
|
syl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
119 |
111 113 118
|
rspcedvd |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
120 |
119
|
ex |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) ) |